Induction of Strong Long-Lived Room-Temperature Phosphorescence of N-Phenyl-2-naphthylamine Molecules by Confinement in a Crystalline Dibromobiphenyl Matrix
The design and preparation of metal‐free organic materials that exhibit room‐temperature phosphorescence (RTP) is a very attractive topic owing to potential applications in organic optoelectronic devices. Herein, we present a facile approach to efficient and long‐lived organic RTP involving the dopi...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2016-12, Vol.55 (50), p.15589-15593 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The design and preparation of metal‐free organic materials that exhibit room‐temperature phosphorescence (RTP) is a very attractive topic owing to potential applications in organic optoelectronic devices. Herein, we present a facile approach to efficient and long‐lived organic RTP involving the doping of N‐phenylnaphthalen‐2‐amine (PNA) or its derivatives into a crystalline 4,4′‐dibromobiphenyl (DBBP) matrix. The resulting materials showed strong and persistent RTP emission with a quantum efficiency of approximately 20 % and a lifetime of a few to more than 100 milliseconds. Bright white dual emission containing blue fluorescence and yellowish‐green RTP from the PNA‐doped DBBP crystals was also confirmed by Commission Internationale de l'Eclairage (CIE) coordinates of (x=0.29–0.31, y=0.38–0.41).
Doping‐enhanced performance: Strong room‐temperature phosphorescence (RTP) of pure organic compounds was induced by doping PNA and its derivatives into a DBBP crystalline matrix. The PNA/DBBP crystal system emitted efficient, stable, and long‐lived RTP under ambient conditions (see picture). |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.201607653 |