Prosthetic Aortic Valve Fixation Study: 48 Replacement Valves Analyzed Using Digital Pressure Mapping

Objective Prostheses attachment is critical in aortic valve replacement surgery, yet reliable prosthetic security remains a challenge. Accurate techniques to analyze prosthetic fixation pressures may enable the use of fewer sutures while reducing the risk of paravalvular leaks (PVL). Methods Customi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Innovations (Philadelphia, Pa.) Pa.), 2016-09, Vol.11 (5), p.327-336
Hauptverfasser: Lee, Candice Y., Wong, Joshua K., Ross, Ronald E., Liu, David C., Khabbaz, Kamal R., Martellaro, Angelo J., Gorea, Heather R., Sauer, Jude S., Knight, Peter A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective Prostheses attachment is critical in aortic valve replacement surgery, yet reliable prosthetic security remains a challenge. Accurate techniques to analyze prosthetic fixation pressures may enable the use of fewer sutures while reducing the risk of paravalvular leaks (PVL). Methods Customized digital thin film pressure transducers were sutured between aortic annulus models and 21-mm bioprosthetic valves with 15 × 4-mm, 12 × 4-mm, or 9 × 6-mm-wide pledgeted mattress sutures. Simulating open and minimally invasive access, 4 surgeons, blinded to data acquisition, each secured 12 valves using manual knot-tying (hand-tied [HT] or knot-pusher [KP]) or automated titanium fasteners (TFs). Real-time pressure measurements and times were recorded. Two-dimensional (2D) and 3D pressure maps were generated for all valves. Pressures less than 80 mm Hg were considered at risk for PVL. Results Pressures under each knot (intrasuture) fell less than 80 mm Hg for 12 of 144 manual knots (5/144 HT, 7/144 KP) versus 0 of 288 TF (P < 0.001). Pressures outside adjacent sutures (extrasuture) were less than 80 mm Hg in 10 of 60 HT, zero of 60 KP, and zero of 120 TF sites for 15 × 4-mm valves; 17 of 48 HT, 25 of 48 KP, and 12 of 96 TF for 12 × 4-mm valves; and 15 of 36 HT, 17 of 36 KP and 9 and 72 TF for 9 × 6-mm valves; P < 0.001 all manual versus TF. Annular areas with pressures less than 80 mm Hg ranged from 0% of the sewing-ring area (all open TF) to 31% (12 × 4 mm, KP). The average time per manual knot, 46 seconds (HT, 31 seconds; KP, 61 seconds), was greater than TF, 14 seconds (P < 0.005). Conclusions Reduced operative times and PVL risk would fortify the advantages of surgical aortic valve replacement. This research encourages continued exploration of technical factors in optimizing prosthetic valve security.
ISSN:1556-9845
1559-0879
DOI:10.1097/imi.0000000000000286