A 46,XX Ovotesticular Disorder of Sex Development Likely Caused by a Steroidogenic Factor-1 (NR5A1) Variant
Background: A variant in steroidogenic factor-1 (SF-1, encoded by the gene NR5A1), p.Arg92Trp, has recently been reported in multiple families with 46,XX ovotesticular or testicular disorders of sex development (DSD). This amino acid change impacts the DNA-binding domain and perturbs gonadal differe...
Gespeichert in:
Veröffentlicht in: | Hormone research in paediatrics 2017-01, Vol.87 (3), p.191-195 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: A variant in steroidogenic factor-1 (SF-1, encoded by the gene NR5A1), p.Arg92Trp, has recently been reported in multiple families with 46,XX ovotesticular or testicular disorders of sex development (DSD). This amino acid change impacts the DNA-binding domain and perturbs gonadal differentiation pathways. Methods: Whole-exome sequencing was performed on a 46,XX subject with ovotesticular DSD. Results: Exome results identified a heterozygous NR5A1 variant, p.Arg92Gln, in the 46,XX ovotesticular DSD proband. This arginine-to-glutamine change has been previously reported in the homozygous state in a 46,XY patient with gonadal and adrenal dysgenesis, though 46,XY and 46,XX heterozygous carriers of this variant have not been previously reported to have any clinical phenotype. Conclusions: The NR5A1 p.Arg92Gln variant, which has thus far only been seen in a family with 46,XY DSD, most likely contributes to the ovotesticular DSD in this case. In light of the recent reports of unrelated 46,XX subjects with testicular or ovotesticular DSD with the NR5A1 variant p.Arg92Trp, it appears that other mutations in the DNA binding domain have the potential to impact the factors determining testicular and ovarian differentiation. This case demonstrates the variability of phenotypes with the same genotype and broadens our understanding of the role of SF-1 in gonadal differentiation. |
---|---|
ISSN: | 1663-2818 1663-2826 1663-2826 |
DOI: | 10.1159/000452888 |