Presenilin-1 mutations of leucine 166 equally affect the generation of the Notch and APP intracellular domains independent of their effect on A beta sub(42) production

The Alzheimer's disease (AD)-associated presenilin (PS) proteins are required for the gamma -secretase cleavages of the beta -amyloid precursor protein and the site 3 (S3) protease cleavage of Notch. These intramembrane cleavages release amyloid- beta peptide (A beta ), including the pathogenic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2002-06, Vol.99 (12), p.8025-8030
Hauptverfasser: Moehlmann, T, Winkler, E, Xia, X, Edbauer, D, Murrell, J, Capell, A, Kaether, C, Zheng, H, Ghetti, B, Haass, C, Steiner, H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Alzheimer's disease (AD)-associated presenilin (PS) proteins are required for the gamma -secretase cleavages of the beta -amyloid precursor protein and the site 3 (S3) protease cleavage of Notch. These intramembrane cleavages release amyloid- beta peptide (A beta ), including the pathogenic 42-aa variant (A beta sub(42)), as well as the beta -amyloid precursor protein and the Notch intracellular domains (AICD, NICD). Whereas A beta is generated by endoproteolysis in the middle of the transmembrane domain, AICD and NICD are generated by cleavages at analogous positions close to the cytoplasmic border of the transmembrane domain. Numerous mutations causing familial AD (FAD) that all cause increased production of A beta sub(42) have been found in the PS1 gene. Here we have investigated the previously uncharacterized, very aggressive FAD mutation L166P that causes onset of AD in adolescence. Strikingly, the PS1 L166P mutation not only induces an exceptionally high increase of A beta sub(42) production but also impairs NICD production and Notch signaling, as well as AICD generation. Thus, FAD-associated PS mutants cannot only affect the generation of NICD, but also that of AICD. Moreover, further analysis with artificial L166 mutants revealed that the gamma -secretase cleavage at position 40/42 and the S3-like gamma -secretase cleavage at position 49 of the A beta domain are both differentially affected by PS1 L166 mutants. Finally, we show that PS1 L166 mutants affect the generation of NICD and AICD in a similar manner, supporting the concept that S3 protease and S3-like gamma -secretase cleavages are mediated by identical proteolytic activities.
ISSN:0027-8424
DOI:10.1073/pnas.112686799