Influence of raw milk quality on processed dairy products: How do raw milk quality test results relate to product quality and yield?

This article provides an overview of the influence of raw milk quality on the quality of processed dairy products and offers a perspective on the merits of investing in quality. Dairy farmers are frequently offered monetary premium incentives to provide high-quality milk to processors. These incenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dairy science 2016-12, Vol.99 (12), p.10128-10149
Hauptverfasser: Murphy, Steven C., Martin, Nicole H., Barbano, David M., Wiedmann, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article provides an overview of the influence of raw milk quality on the quality of processed dairy products and offers a perspective on the merits of investing in quality. Dairy farmers are frequently offered monetary premium incentives to provide high-quality milk to processors. These incentives are most often based on raw milk somatic cell and bacteria count levels well below the regulatory public health–based limits. Justification for these incentive payments can be based on improved processed product quality and manufacturing efficiencies that provide the processor with a return on their investment for high-quality raw milk. In some cases, this return on investment is difficult to measure. Raw milks with high levels of somatic cells and bacteria are associated with increased enzyme activity that can result in product defects. Use of raw milk with somatic cell counts >100,000cells/mL has been shown to reduce cheese yields, and higher levels, generally >400,000 cells/mL, have been associated with textural and flavor defects in cheese and other products. Although most research indicates that fairly high total bacteria counts (>1,000,000 cfu/mL) in raw milk are needed to cause defects in most processed dairy products, receiving high-quality milk from the farm allows some flexibility for handling raw milk, which can increase efficiencies and reduce the risk of raw milk reaching bacterial levels of concern. Monitoring total bacterial numbers in regard to raw milk quality is imperative, but determining levels of specific types of bacteria present has gained increasing importance. For example, spores of certain spore-forming bacteria present in raw milk at very low levels (e.g.,
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2016-11172