Structure-sensitive enantiospecific adsorption on naturally chiral Cu(hkl) R&S surfaces

The desorption kinetics of a chiral compound, R-3-methylcyclohexanone (R-3MCHO), have been measured on both enantiomers of seven chiral Cu(hkl) surfaces and on nine achiral Cu single crystal surfaces with surface structures that collectively span the various regions of the stereographic triangle. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2017-01, Vol.29 (3), p.034001-034001
Hauptverfasser: Gellman, Andrew J, Huang, Ye, Koritnik, Anjanette J, Horvath, Joshua D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The desorption kinetics of a chiral compound, R-3-methylcyclohexanone (R-3MCHO), have been measured on both enantiomers of seven chiral Cu(hkl) surfaces and on nine achiral Cu single crystal surfaces with surface structures that collectively span the various regions of the stereographic triangle. The naturally chiral surfaces have terrace-step-kink structures formed by all six possible combinations of the three low Miller index microfacets. The chirality of the kink sites is defined by the rotational orientation of the (1 1 1), (1 0 0) and (1 1 0) microfacets forming the kink. R-3MCHO adsorbs reversibly on these Cu surfaces and temperature programmed desorption has been used to measure its desorption energetics from the chiral kink sites. The desorption energies from the R- and S-kink sites are enantiospecific, [Formula: see text], on the chiral surfaces. The magnitude of the enantiospecificity is [Formula: see text]  ≈  1 kJ mol on all seven chiral surfaces. However, the values of [Formula: see text] are sensitive to elements of the surface structure other than just their sense of chirality as defined by the rotational orientation of the low Miller index microfacets forming the kinks; [Formula: see text] changes sign within the set of surfaces of a given chirality.
ISSN:1361-648X