Stimulation of spinal dorsal horn β2-adrenergic receptor ameliorates neuropathic mechanical hypersensitivity through a reduction of phosphorylation of microglial p38 MAP kinase and astrocytic c-jun N-terminal kinase

The noradrenaline-adrenergic system has a crucial role in controlling nociceptive transduction at the spinal level. While α-adrenergic receptors are known to regulate nociceptive neurotransmitter release at the spinal presynaptic level, it is not entirely clear whether β-adrenergic receptors are inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurochemistry international 2016-12, Vol.101, p.144-155
Hauptverfasser: Zhang, Fang Fang, Morioka, Norimitsu, Abe, Hiromi, Fujii, Shiori, Miyauchi, Kazuki, Nakamura, Yoki, Hisaoka-Nakashima, Kazue, Nakata, Yoshihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The noradrenaline-adrenergic system has a crucial role in controlling nociceptive transduction at the spinal level. While α-adrenergic receptors are known to regulate nociceptive neurotransmitter release at the spinal presynaptic level, it is not entirely clear whether β-adrenergic receptors are involved in controlling pain transduction at the spinal level as well. The current study elucidated a role of β-adrenergic receptors in neuropathic pain in mice following a partial sciatic nerve ligation (PSNL). In addition, the cellular and intracellular signaling cascade induced by β-adrenergic receptors in neuropathic mice was elaborated. Intrathecal injection of isoproterenol (1 nmol), a nonselective β-adrenergic receptor agonist, briefly ameliorated hind paw mechanical hypersensitivity of PSNL mice. Isoproterenol's antinociceptive effect was mediated through β2-adrenergic receptors since pretreatment with ICI118551, a selective β2-adrenergic receptor antagonist, but not with CGP20712A, a selective β1-adrenergic receptor antagonist, significantly attenuated isoproterenol's effect. Furthermore, intrathecal treatment with a selective β2-adrenergic receptor agonist, terbutaline, but not a selective β1-adrenergic receptor agonist, dobutamine, also significantly ameliorated neuropathic pain. Fourteen days after PSNL, increased phosphorylation of both p38 Mitogen-activated protein kinase (MAPK) in microglia and c-jun N-terminal kinase (JNK) in astrocytes of ipsilateral spinal dorsal horn were observed. Phosphorylation of both microglial p38 MAPK and astrocytic JNK were downregulated by stimulation of the β2-adrenergic receptor. Together, these results suggest that spinal β2-adrenergic receptor have an inhibitory role in neuropathic nociceptive transduction at the spinal level through a downregulation of glial activity, perhaps through modulation of MAP kinases phosphorylation. Thus, targeting of β2-adrenergic receptors could be an effective therapeutic strategy in treating neuropathic pain. •Intrathecal isoproterenol reduces neuropathic mechanical hypersensitivity in mice.•Spinal β2-adrenergic receptors underlie the antinociceptive effect of isoproterenol.•Spinal microglia's p38 activation is reduced by β2-adrenergic receptor stimulation.•Spinal astrocytic JNK activation is reduced by β2-adrenergic receptor stimulation.
ISSN:0197-0186
1872-9754
DOI:10.1016/j.neuint.2016.11.004