Comparison of constitutive and inducible maize kernel proteins of genotypes resistant or susceptible to aflatoxin production

Maize genotypes resistant or susceptible to aflatoxin production or contamination were compared for differences in both constitutive and inducible proteins. Five additional constitutive proteins were found to be associated with resistance in over 8 of the 10 genotypes examined. Among these, the 58-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of food protection 2001-11, Vol.64 (11), p.1785-1792
Hauptverfasser: Chen, Z Y, Brown, R L, Cleveland, T E, Damann, K F, Russin, J S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maize genotypes resistant or susceptible to aflatoxin production or contamination were compared for differences in both constitutive and inducible proteins. Five additional constitutive proteins were found to be associated with resistance in over 8 of the 10 genotypes examined. Among these, the 58- and 46-kDa proteins were identified as globulin-1 and globulin-2, respectively. Differences in the ability to induce specific antifungal proteins, such as the higher synthesis of the 22-kDa zeamatin in resistant genotypes, were also observed between resistant and susceptible kernels incubated under germinating conditions (31 degrees C, 100% humidity). Both constitutive and inducible proteins appear to be necessary for kernel resistance. Embryo-killed kernels (unable to synthesize new proteins) supported the highest level of aflatoxins, whereas imbibed kernels (to hasten protein induction) supported the lowest among all treatments. This suggests that the synthesis of new proteins by the embryo plays an important role in conferring resistance. However, significantly lower levels of aflatoxin production in embryo-killed resistant kernels than in susceptible ones suggest that, in reality, high levels of constitutive antifungal proteins are indispensable to kernel resistance.
ISSN:0362-028X
DOI:10.4315/0362-028X-64.11.1785