Synergistic Therapy of Doxorubicin and miR-129-5p with Self-Cross-Linked Bioreducible Polypeptide Nanoparticles Reverses Multidrug Resistance in Cancer Cells

Although microRNAs (miRs) are short endogenous noncoding RNAs playing a central role in cancer initiation and progression, their therapeutic potential in overcoming multidrug resistance (MDR) remains unclear. In the present study, we developed self-cross-linked biodegradable poly­(ethylene glycol)-b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2016-05, Vol.17 (5), p.1737-1747
Hauptverfasser: Yi, Huqiang, Liu, Lanlan, Sheng, Nan, Li, Ping, Pan, Hong, Cai, Lintao, Ma, Yifan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although microRNAs (miRs) are short endogenous noncoding RNAs playing a central role in cancer initiation and progression, their therapeutic potential in overcoming multidrug resistance (MDR) remains unclear. In the present study, we developed self-cross-linked biodegradable poly­(ethylene glycol)-b-poly­(l-lysine)-b-poly­(l-cysteine) (LCss) polypeptide nanoparticles to codeliver DOX and miR-129-5p, which aimed to overcome MDR in cancer cells. The results showed that LCss nanoparticles effectively coencapsulated DOX and miR with great stability, but quickly disassembled and released their payload in a bioreducible environment. The codelivery of miR-129-5p and DOX with LCss (DLCss/miR) significantly increased miR-129-5p expression over 100-fold in MCF-7/ADR cells, which effectively overcame MDR by directly inhibiting P-glycoprotein (P-gp), thereby increasing intracellular DOX accumulation and cytotoxicity in MCF-7/ADR cells. Furthermore, miR-129-5p also partially diminished cyclin-dependent kinase 6 (CDK6), and synergized with DOX to simultaneously decrease S phase and induce G2 phase cell cycle arrest, thereby further enhancing the chemosensitivity of MCF-7/ADR cells. Hence, redox-responsive LCss nanoparticles are potent nanocarrier for combinational drug-miR therapy, which could be a promising strategy to overcome MDR in cancer cells.
ISSN:1525-7797
1526-4602
DOI:10.1021/acs.biomac.6b00141