Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying

[Display omitted] Currently, most of the approved protein and peptide-based medicines are delivered via conventional parenteral injection (intramuscular, subcutaneous or intravenous). A frequent dosing regimen is often necessary because of their short plasma half-lives, causing poor patient complian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2016-02, Vol.498 (1-2), p.82-95
Hauptverfasser: Wan, Feng, Yang, Mingshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Currently, most of the approved protein and peptide-based medicines are delivered via conventional parenteral injection (intramuscular, subcutaneous or intravenous). A frequent dosing regimen is often necessary because of their short plasma half-lives, causing poor patient compliance (e.g. pain, abscess, etc.), side effects owing to typical peak-valley plasma concentration time profiles, and increased costs. Among many sustained-release formulations poly lactic-co-glycolic acid (PLGA)-based depot microparticle systems may represent one of the most promising approaches to provide protein and peptide drugs with a steady pharmacokinetic/pharmacodynamic profile maintained for a long period. However, the development of PLGA-based microparticle systems is still impeded by lack of easy, fast, effective manufacturing technologies. The aim of this paper is to review recent advances in spray drying, a one-step, continuous microencapsulation process, for manufacturing of PLGA-based depot microparticle systems with a focus on the recent efforts on understanding of the role of nozzle design in the microencapsulation of proteins/peptides, and the effect of critical solvent properties and process parameters on the critical quality attributes of the spray-dried microparticles.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2015.12.025