Near-source grid-based measurement of CO and PM2.5 concentration during a full-scale fire experiment in southern European shrubland
There is limited research on the exposure of wildland firefighters to smoke because of the operational obstacles when monitoring air pollutants in the field. In this work, a grid of portable sensors was used to measure PM2.5 and CO concentrations in the near-source region during the burn of two shru...
Gespeichert in:
Veröffentlicht in: | Atmospheric environment (1994) 2016-11, Vol.145, p.19-28 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is limited research on the exposure of wildland firefighters to smoke because of the operational obstacles when monitoring air pollutants in the field. In this work, a grid of portable sensors was used to measure PM2.5 and CO concentrations in the near-source region during the burn of two shrubland research blocks in Central Portugal. Strong spatial variability of smoke levels was observed in the analysis of the ratios between mean concentrations of neighbouring sensors, with values as high as 4.4 for PM2.5 and 7.4 for CO. These large gradients were registered at a distance of only 5 m suggesting that considerable differences on individual exposure can occur depending on the location of that individual in relation to the smoke plume trajectory. Also, peak events of 2–3 times the mean were observed in periods exceeding 6 min. In the two experiments, the average concentrations of both PM2.5 and CO were higher during smouldering, which represents a risk of acute exposure due to the closer proximity of firefighters to the emission source during mop-up, stressing the importance of wearing portable gas detectors for managing critical exposure. The collected data constitutes a step forward in the effort to understand the mechanisms controlling the exposure during firefighting operations, by providing a source of information on near-ground concentration fluctuations within a biomass-burning smoke plume at a fine spatial-temporal resolution.
•Dynamics of wildland firefighters' exposure to smoke still scarcely understood.•Grid of portable sensors allows detailed monitoring of near-source smoke levels.•Individual exposure largely impacted by extreme spatial concentration gradients.•Critical risk of acute exposure during smouldering.•Visual estimate of fire safety conditions potentially misleading. |
---|---|
ISSN: | 1352-2310 1873-2844 |
DOI: | 10.1016/j.atmosenv.2016.09.017 |