Screening of Metarhizium anisopliae UV-induced mutants for faster growth yields a hyper-virulent isolate with greater UV and thermal tolerances
The insect pathogenic fungus Metarhizium anisopliae is an important insect biological control agent commercialized for use worldwide. Fungal infection is percutaneous, and rapid germination and growth has been linked to virulence. Using a simple in vitro growth screen to isolate mutants with increas...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2016-11, Vol.100 (21), p.9217-9228 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The insect pathogenic fungus
Metarhizium anisopliae
is an important insect biological control agent commercialized for use worldwide. Fungal infection is percutaneous, and rapid germination and growth has been linked to virulence. Using a simple in vitro growth screen to isolate mutants with increased virulence,
M. anisopliae
SM04 conidia were exposed to UV radiation for 20, 40, and 60 min, and mutants were subsequently screened for more rapid growth on standard potato dextrose agar. From a screen of >6,000 colonies, mutants were selected based on larger colony diameters as compared to the wild-type parent. Insect bioassays using the diamondback moth,
Plutella xylostella
, revealed one mutant, designated as MaUV-40.1 as displaying both more rapid growth and increased virulence. The mean lethal time to kill (LT
50
using 10
6
conidia/ml) was 57.6 and 115.4 h for the MaUV-40.1 mutant and wild-type strains, respectively. Total conidial production, UV and thermal tolerances of the MaUV-40.1 strain were increased, but a reduced secretome was seen for the mutant compared to wild type. Analyses of culture supernatants indicated significant shifts in secondary metabolite production in the mutant. The insecticidal activity of EthOAc extracts derived from MaUV-40.1 mutant cell-free culture supernatants were ~20 times more potent that wild-type extracts. These data indicate that mutagenesis coupled to a growth screen can be a simple approach to isolate strains with greater stress resistance and virulence and that cell-free extracts may hold promise as an alternative to the living organism for insect control. |
---|---|
ISSN: | 0175-7598 1432-0614 |
DOI: | 10.1007/s00253-016-7746-7 |