Sol–Gel-Based Titania–Silica Thin Film Overlay for Long Period Fiber Grating-Based Biosensors

An evanescent wave optical fiber biosensor based on titania–silica-coated long period grating (LPG) is presented. The chemical overlay, which increases the refractive index (RI) sensitivity of the sensor, consists of a sol–gel-based titania–silica thin film, deposited along the sensing portion of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2015-12, Vol.87 (24), p.12024-12031
Hauptverfasser: Chiavaioli, Francesco, Biswas, Palas, Trono, Cosimo, Jana, Sunirmal, Bandyopadhyay, Somnath, Basumallick, Nandini, Giannetti, Ambra, Tombelli, Sara, Bera, Susanta, Mallick, Aparajita, Baldini, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An evanescent wave optical fiber biosensor based on titania–silica-coated long period grating (LPG) is presented. The chemical overlay, which increases the refractive index (RI) sensitivity of the sensor, consists of a sol–gel-based titania–silica thin film, deposited along the sensing portion of the fiber by means of the dip-coating technique. Changing both the sol viscosity and the withdrawal speed during the dip-coating made it possible to adjust the thickness of the film overlay, which is a crucial parameter for the sensor performance. After the functionalization of the fiber surface using a methacrylic acid/methacrylate copolymer, an antibody/antigen (IgG/anti-IgG) assay was carried out to assess the performance of sol–gel based titania–silica-coated LPGs as biosensors. The analyte concentration was determined from the wavelength shift at the end of the binding process and from the initial binding rate. This is the first time that a sol–gel based titania–silica-coated LPG is proposed as an effective and feasible label-free biosensor. The specificity of the sensor was validated by performing the same model assay after spiking anti-IgG into human serum. With this structured LPG, detection limits of the order of tens of micrograms per liter (10–11 M) are attained.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.5b01841