Dilution cultivation of marine heterotrophic bacteria abundant after a spring phytoplankton bloom in the North Sea

Summary The roles of individual bacterioplankton species in the re‐mineralization of algal biomass are poorly understood. Evidence from molecular data had indicated that a spring diatom bloom in the German Bight of the North Sea in 2009 was followed by a rapid succession of uncultivated bacterioplan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2015-10, Vol.17 (10), p.3515-3526
Hauptverfasser: Hahnke, Richard L., Bennke, Christin M., Fuchs, Bernhard M., Mann, Alexander J., Rhiel, Erhard, Teeling, Hanno, Amann, Rudolf, Harder, Jens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary The roles of individual bacterioplankton species in the re‐mineralization of algal biomass are poorly understood. Evidence from molecular data had indicated that a spring diatom bloom in the German Bight of the North Sea in 2009 was followed by a rapid succession of uncultivated bacterioplankton species, including members of the genera Ulvibacter, Formosa, Polaribacter (class Flavobacteria) and Reinekea (class Gammaproteobacteria). We isolated strains from the same site during the diatom bloom in spring 2010 using dilution cultivation in an artificial seawater medium with micromolar substrate and nutrient concentrations. Flow cytometry demonstrated growth from single cells to densities of 104–106 cells ml–1 and a culturability of 35%. Novel Formosa, Polaribacter and Reinekea strains were isolated and had 16S rRNA gene sequence identities of > 99.8% with bacterioplankton in spring or summer 2009. Genomes of selected isolates were draft sequenced and used for read recruitment of metagenomes from bacterioplankton in 2009. Metagenome reads covered 93% of a Formosa clade B, 91% of a Reinekea and 74% of a Formosa clade A genome, applying a ≥ 94.5% nucleotide identity threshold. These novel strains represent abundant bacterioplankton species thriving on coastal phytoplankton blooms in the North Sea.
ISSN:1462-2912
1462-2920
DOI:10.1111/1462-2920.12479