Brain imaging with synthetic MR in children: clinical quality assessment

Introduction Synthetic magnetic resonance imaging is a quantitative imaging technique that measures inherent T1-relaxation, T2-relaxation, and proton density. These inherent tissue properties allow synthesis of various imaging sequences from a single acquisition. Clinical use of synthetic MR imaging...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroradiology 2016-10, Vol.58 (10), p.1017-1026
Hauptverfasser: Betts, Aaron M., Leach, James L., Jones, Blaise V., Zhang, Bin, Serai, Suraj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction Synthetic magnetic resonance imaging is a quantitative imaging technique that measures inherent T1-relaxation, T2-relaxation, and proton density. These inherent tissue properties allow synthesis of various imaging sequences from a single acquisition. Clinical use of synthetic MR imaging has been described in adult populations. However, use of synthetic MR imaging has not been previously reported in children. The purpose of this study is to report our assessment of diagnostic image quality using synthetic MR imaging in children. Methods Synthetic MR acquisition was obtained in a sample of children undergoing brain MR imaging. Image quality assessments were performed on conventional and synthetic T1-weighted, T2-weighted, and FLAIR images. Standardized linear measurements were performed on conventional and synthetic T2 images. Estimates of patient age based upon myelination patterns were also performed. Results Conventional and synthetic MR images were evaluated on 30 children. Using a 4-point assessment scale, conventional imaging performed better than synthetic imaging for T1-weighted, T2-weighted, and FLAIR images. When the assessment was simplified to a dichotomized scale, the conventional and synthetic T1-weighted and T2-weighted images performed similarly. However, the superiority of conventional FLAIR images persisted in the dichotomized assessment. There were no statistically significant differences between linear measurements made on T2-weighted images. Estimates of patient age based upon pattern of myelination were also similar between conventional and synthetic techniques. Conclusion Synthetic MR imaging may be acceptable for clinical use in children. However, users should be aware of current limitations that could impact clinical utility in the software version used in this study.
ISSN:0028-3940
1432-1920
DOI:10.1007/s00234-016-1723-9