Oxidative Ionization Under Certain Negative-Ion Mass Spectrometric Conditions

1,4-Hydroquinone and several other phenolic compounds generate (M – 2) –• radical-anions, rather than deprotonated molecules, under certain negative-ion mass spectrometric conditions. In fact, spectra generated under helium-plasma ionization (HePI) conditions from 1,4-hydroquinone and 1,4-benzoquino...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society for Mass Spectrometry 2017-02, Vol.28 (2), p.270-277
Hauptverfasser: Hassan, Isra, Pavlov, Julius, Errabelli, Ramu, Attygalle, Athula B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:1,4-Hydroquinone and several other phenolic compounds generate (M – 2) –• radical-anions, rather than deprotonated molecules, under certain negative-ion mass spectrometric conditions. In fact, spectra generated under helium-plasma ionization (HePI) conditions from 1,4-hydroquinone and 1,4-benzoquinone (by electron capture) were practically indistinguishable. Because this process involves a net loss of H • and H + , it can be termed oxidative ionization. The superoxide radical-anion (O 2 –• ), known to be present in many atmospheric-pressure plasma ion sources operated in the negative mode, plays a critical role in the oxidative ionization process. The presence of a small peak at m/z 142 in the spectrum of 1,4-hydroquinone, but not in that of 1,4-benzoquinone, indicated that the initial step in the oxidative ionization process is the formation of an O 2 –• adduct. On the other hand, under bona fide electrospray ionization (ESI) conditions, 1,4-hydroquinone generates predominantly an (M – 1) – ion. It is known that at sufficiently high capillary voltages, corona discharges begin to occur even in an ESI source. At lower ESI capillary voltages, deprotonation predominates; as the capillary voltage is raised, the abundance of O 2 –• present in the plasma increases, and the source in turn increasingly behaves as a composite ESI/APCI source. While maintaining post-ionization ion activation to a minimum (to prevent fragmentation), and monitoring the relative intensities of the m/z 109 (due to deprotonation) and 108 (oxidative ionization) peaks recorded from 1,4-hydroquinone, a semiquantitative estimation of the APCI contribution to the overall ion-generation process can be obtained. Graphical Abstract ᅟ
ISSN:1044-0305
1879-1123
DOI:10.1007/s13361-016-1527-5