The Nonspecific Lipid Transfer Protein AtLtpI-4 Is Involved in Suberin Formation of Arabidopsis thaliana Crown Galls

Nonspecific lipid transfer proteins reversibly bind different types of lipid molecules in a hydrophobic cavity. They facilitate phospholipid transfer between membranes in vitro, play a role in cuticle and possibly in suberin formation, and might be involved in plant pathogen defense signaling. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2016-11, Vol.172 (3), p.1911-1927
Hauptverfasser: Deeken, Rosalia, Saupe, Stefanie, Klinkenberg, Joern, Riedel, Michael, Leide, Jana, Hedrich, Rainer, Mueller, Thomas D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonspecific lipid transfer proteins reversibly bind different types of lipid molecules in a hydrophobic cavity. They facilitate phospholipid transfer between membranes in vitro, play a role in cuticle and possibly in suberin formation, and might be involved in plant pathogen defense signaling. This study focuses on the role of the lipid transfer protein AtLTPI-4 in crown gall development. Arabidopsis (Arabidopsis thaliana) crown gall tumors, which develop upon infection with the virulent Agrobacterium tumefaciens strain C58, highly expressed AtLTPI-4. Crown galls of the atltpI-4 loss-of-function mutant were much smaller compared with those of wild-type plants. The gene expression pattern and localization of the protein to the plasma membrane pointed to a function of AtLTPI-4 in cell wall suberization. Since Arabidopsis crown galls are covered by a suberin-containing periderm instead of a cuticle, we analyzed the suberin composition of crown galls and found a reduction in the amounts of long-chain fatty acids (C18:0) in the atltpI-4 mutant. To demonstrate the impact of AtLtpI-4 on extracellular lipid composition, we expressed the protein in Arabidopsis epidermis cells. This led to a significant increase in the very-long-chain fatty acids C₂₄ and C₂₆ in the cuticular wax fraction. Homology modeling and lipid-protein-overlay assays showed that AtLtpI-4 protein can bind these very-long-chain fatty acids. Thus, AtLtpI-4 protein may facilitate the transfer of long-chain as well as very-long-chain fatty acids into the apoplast, depending on the cell type in which it is expressed. In crown galls, which endogenously express AtLtpI-4, it is involved in suberin formation.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.16.01486