Amplification of the Optical Activity of Gold Clusters by the Proximity of BINAP

Despite recent progress in the synthesis and characterization of optically active gold clusters, the factor determining optical rotatory strength has not been clarified due to the lack of structurally resolved, enantiomerically pure Au clusters. We addressed this issue by studying the correlation be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2016-11, Vol.7 (22), p.4509-4513
Hauptverfasser: Takano, Shinjiro, Tsukuda, Tatsuya
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite recent progress in the synthesis and characterization of optically active gold clusters, the factor determining optical rotatory strength has not been clarified due to the lack of structurally resolved, enantiomerically pure Au clusters. We addressed this issue by studying the correlation between the optical activity and geometrical structures of two types of Au clusters that were protected by chiral diphosphines: [Au11(R/S-DIOP)4Cl2]+ (DIOP = 1,4-bis­(diphenylphosphino)-2,3-o-isopropylidene-2,3-butanediol) and [Au8(R/S-BINAP)3(PPh3)2]2+ (BINAP = 2,2′-bis­(diphenylphosphino)-1,1′-binaphthyl). [Au8(BINAP)3(PPh3)2]2+ showed stronger rotatory strengths than [Au11(DIOP)4Cl2]+ in the visible region, while the Hausdorff chirality measure calculated from the crystal data indicated that the Au core of the former is less chiral than that of the latter. We propose that the optical activity in the Au core-based transition due to the deformed core is further amplified by chiral arrangement of the binaphthyl moiety near the Au core.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.6b02294