Novel mixture model for the representation of potential energy surfaces

We demonstrate that knowledge of chemical physics on a materials system can be automatically extracted from first-principles calculations using a data mining technique; this information can then be utilized to construct a simple empirical atomic potential model. By using unsupervised learning of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2016-10, Vol.145 (15), p.154103-154103
Hauptverfasser: Pham, Tien Lam, Kino, Hiori, Terakura, Kiyoyuki, Miyake, Takashi, Dam, Hieu Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate that knowledge of chemical physics on a materials system can be automatically extracted from first-principles calculations using a data mining technique; this information can then be utilized to construct a simple empirical atomic potential model. By using unsupervised learning of the generative Gaussian mixture model, physically meaningful patterns of atomic local chemical environments can be detected automatically. Based on the obtained information regarding these atomic patterns, we propose a chemical-structure-dependent linear mixture model for estimating the atomic potential energy. Our experiments show that the proposed mixture model significantly improves the accuracy of the prediction of the potential energy surface for complex systems that possess a large diversity in their local structures.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4964318