Adaptive detection of range-spread targets in compound Gaussian clutter with the square root of inverse Gaussian texture
The compound Gaussian clutter with the square root of inverse Gaussian texture component has been successfully used for modeling the heavy-tailed non-Gaussian clutter measured by high-resolution radars. In high-resolution radars, the targets may extend along multiple consecutive range cells, which a...
Gespeichert in:
Veröffentlicht in: | Digital signal processing 2016-09, Vol.56, p.132-139 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The compound Gaussian clutter with the square root of inverse Gaussian texture component has been successfully used for modeling the heavy-tailed non-Gaussian clutter measured by high-resolution radars. In high-resolution radars, the targets may extend along multiple consecutive range cells, which are called range-spread targets. In this paper, we consider the range-spread target detection problem in the compound Gaussian clutter with the square root of inverse Gaussian texture. Three adaptive detectors are proposed based on Bayesian one-step generalized likelihood ratio test, maximum a posteriori generalized likelihood ratio test and Bayesian two-step generalized likelihood ratio test, respectively. Finally, the detection performances of the proposed detectors are evaluated by the Monte Carlo simulation. The simulation results show that the proposed detectors have better detection performance of range-spread target than the conventional generalized likelihood ratio test detector. |
---|---|
ISSN: | 1051-2004 1095-4333 |
DOI: | 10.1016/j.dsp.2016.06.009 |