Investigating lanthanide dopant distributions in Yttrium Aluminum Garnet (YAG) using solid state paramagnetic NMR
This paper demonstrates the approach of using paramagnetic effects observed in NMR spectra to investigate the distribution of lanthanide dopant cations in YAG (yttrium aluminum garnet, Y3Al5O12) optical materials, as a complimentary technique to optical spectroscopy and other standard methods of cha...
Gespeichert in:
Veröffentlicht in: | Solid state nuclear magnetic resonance 2016-10, Vol.79, p.11-22 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper demonstrates the approach of using paramagnetic effects observed in NMR spectra to investigate the distribution of lanthanide dopant cations in YAG (yttrium aluminum garnet, Y3Al5O12) optical materials, as a complimentary technique to optical spectroscopy and other standard methods of characterization. We investigate the effects of Ce3+, Nd3+, Yb3+, Tm3+, and Tm3+-Cr3+ on 27Al and 89Y NMR spectra. We note shifted resonances for both AlO4 and AlO6 sites. In some cases, multiple shifted peaks are observable, and some of these can be empirically assigned to dopant cations in known configurations to the observed nuclides. In many cases, AlO6 peaks shifted by more than one magnetic neighbor can be detected. In general, we observe that the measured intensities of shifted resonances, when spinning sidebands are included, are consistent with predictions from models with dopant cations that are randomly distributed throughout the lattice. In at least one set of 27Al spectra, we identify two sub-peaks possibly resulting from two paramagnetic cations with magnetically coupled spin states neighboring the observed nucleus. We identify systematic changes in the spectra related to known parameters describing the magnetic effects of lanthanide cations, such as larger shift distances when the expectation value of electron spins is greater. We lastly comment on the promise of this technique in future analyses of laser and other crystalline oxide materials.
[Display omitted]
•Paramagnetic shifts are identified in 27Al and 89Y NMR spectra of Ln3+ doped YAG.•Nd3+ is found to be randomly distributed in YO8 sites.•Spinning sideband manifolds of shifted peaks are asymmetric.•The largest peak shifts scale with the expectation values of electronic spins.•Split paramagnetic peaks are identified from two nearest-neighbor dopants. |
---|---|
ISSN: | 0926-2040 1527-3326 |
DOI: | 10.1016/j.ssnmr.2016.10.001 |