Note on the Derivation of the Equation of Motion of a Charged Point-Particle from Hamilton's Principle

An alternative derivation of the equation of motion of a charged point particle from Hamilton’s principle is presented. The variational principle is restated as a Bolza problem of optimal control, the control variable u i , i = 0, …, 3, being the 4-velocity. The trajectory x ¯ i ( s ) i and 4-veloci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysics 2015-06, Vol.58 (2), p.244-249
1. Verfasser: Krikorian, R. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 249
container_issue 2
container_start_page 244
container_title Astrophysics
container_volume 58
creator Krikorian, R. A.
description An alternative derivation of the equation of motion of a charged point particle from Hamilton’s principle is presented. The variational principle is restated as a Bolza problem of optimal control, the control variable u i , i = 0, …, 3, being the 4-velocity. The trajectory x ¯ i ( s ) i and 4-velocity ū i ( s ) of the particle is an optimal pair, i.e., it furnishes an extremum to the action integral. The pair ( x ¯ , ū) satisfies a set of necessary conditions known as the maximum principle. Because of the path dependence of proper time s, we are concerned with a control problem with a free end point in the space of coordinates (s , x 0 , …, x 3 ). To obtain the equation of motion, the transversality condition must be satisfied at the free end point.
doi_str_mv 10.1007/s10511-015-9379-4
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835671754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A451633902</galeid><sourcerecordid>A451633902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-d1a0a570e03792e2f8ccf5d7097dd22097ba32afde9c56467ab35b502330265e3</originalsourceid><addsrcrecordid>eNqNkl-LEzEUxYMoWKsfwLcBH9SFWW-SyWTyWOquXaha_PMc0kzSZpmZdJPMot_e1NHVioLk4eaG37nkXA5CTzGcYwD-KmJgGJeAWSkoF2V1D80w47RssMD30QwYxyUnrH6IHsV4DQCiFvUM2Xc-mcIPRdqb4rUJ7lYll1tvv79c3Ix3_Vv_86aK5V6FnWmLjXdDKjcqJKc7U9jg-2KletclPzyPxSa4QbtDZx6jB1Z10Tz5Uefo8-XFp-WqXL9_c7VcrEvNKkhlixUoxsFA9kAMsY3WlrUcBG9bQnLZKkqUbY3QrK5qrraUbRkQSoHUzNA5Opvm7lUnD8H1KnyVXjm5WqylG-IogdZVJSq4xRl-McGH4G9GE5PsXdSm69Rg_BglbiirOeas-g8U44bzikJGn_2BXvsxDNl1pkiTxxHBflE71Zn8M-tTUPo4VC4qhmtKRXY1R-d_ofJpTe-0H4x1-f1E8PJEkJlkvqSdGmOUVx8_nLJ4YnXwMQZj7xaGQR5DJadQyRwqeQyVPO6BTJqY2WFnwm_m_in6BvoEyZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1828175295</pqid></control><display><type>article</type><title>Note on the Derivation of the Equation of Motion of a Charged Point-Particle from Hamilton's Principle</title><source>SpringerLink Journals - AutoHoldings</source><creator>Krikorian, R. A.</creator><creatorcontrib>Krikorian, R. A.</creatorcontrib><description>An alternative derivation of the equation of motion of a charged point particle from Hamilton’s principle is presented. The variational principle is restated as a Bolza problem of optimal control, the control variable u i , i = 0, …, 3, being the 4-velocity. The trajectory x ¯ i ( s ) i and 4-velocity ū i ( s ) of the particle is an optimal pair, i.e., it furnishes an extremum to the action integral. The pair ( x ¯ , ū) satisfies a set of necessary conditions known as the maximum principle. Because of the path dependence of proper time s, we are concerned with a control problem with a free end point in the space of coordinates (s , x 0 , …, x 3 ). To obtain the equation of motion, the transversality condition must be satisfied at the free end point.</description><identifier>ISSN: 0571-7256</identifier><identifier>EISSN: 1573-8191</identifier><identifier>DOI: 10.1007/s10511-015-9379-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Astronomy ; Astrophysics ; Astrophysics and Astroparticles ; Astrophysics and Cosmology ; Bolza problems ; Derivation ; Equations of motion ; Hamilton's principle ; Hamiltonian systems ; Mathematical analysis ; Mathematical research ; Maximum principle ; Observations and Techniques ; Optimization ; Particle dynamics ; Particle physics ; Physics ; Physics and Astronomy ; Physics research ; Sciences of the Universe ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Texts ; Variational principles</subject><ispartof>Astrophysics, 2015-06, Vol.58 (2), p.244-249</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c540t-d1a0a570e03792e2f8ccf5d7097dd22097ba32afde9c56467ab35b502330265e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10511-015-9379-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10511-015-9379-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03644940$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Krikorian, R. A.</creatorcontrib><title>Note on the Derivation of the Equation of Motion of a Charged Point-Particle from Hamilton's Principle</title><title>Astrophysics</title><addtitle>Astrophysics</addtitle><description>An alternative derivation of the equation of motion of a charged point particle from Hamilton’s principle is presented. The variational principle is restated as a Bolza problem of optimal control, the control variable u i , i = 0, …, 3, being the 4-velocity. The trajectory x ¯ i ( s ) i and 4-velocity ū i ( s ) of the particle is an optimal pair, i.e., it furnishes an extremum to the action integral. The pair ( x ¯ , ū) satisfies a set of necessary conditions known as the maximum principle. Because of the path dependence of proper time s, we are concerned with a control problem with a free end point in the space of coordinates (s , x 0 , …, x 3 ). To obtain the equation of motion, the transversality condition must be satisfied at the free end point.</description><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Astrophysics and Astroparticles</subject><subject>Astrophysics and Cosmology</subject><subject>Bolza problems</subject><subject>Derivation</subject><subject>Equations of motion</subject><subject>Hamilton's principle</subject><subject>Hamiltonian systems</subject><subject>Mathematical analysis</subject><subject>Mathematical research</subject><subject>Maximum principle</subject><subject>Observations and Techniques</subject><subject>Optimization</subject><subject>Particle dynamics</subject><subject>Particle physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics research</subject><subject>Sciences of the Universe</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Texts</subject><subject>Variational principles</subject><issn>0571-7256</issn><issn>1573-8191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkl-LEzEUxYMoWKsfwLcBH9SFWW-SyWTyWOquXaha_PMc0kzSZpmZdJPMot_e1NHVioLk4eaG37nkXA5CTzGcYwD-KmJgGJeAWSkoF2V1D80w47RssMD30QwYxyUnrH6IHsV4DQCiFvUM2Xc-mcIPRdqb4rUJ7lYll1tvv79c3Ix3_Vv_86aK5V6FnWmLjXdDKjcqJKc7U9jg-2KletclPzyPxSa4QbtDZx6jB1Z10Tz5Uefo8-XFp-WqXL9_c7VcrEvNKkhlixUoxsFA9kAMsY3WlrUcBG9bQnLZKkqUbY3QrK5qrraUbRkQSoHUzNA5Opvm7lUnD8H1KnyVXjm5WqylG-IogdZVJSq4xRl-McGH4G9GE5PsXdSm69Rg_BglbiirOeas-g8U44bzikJGn_2BXvsxDNl1pkiTxxHBflE71Zn8M-tTUPo4VC4qhmtKRXY1R-d_ofJpTe-0H4x1-f1E8PJEkJlkvqSdGmOUVx8_nLJ4YnXwMQZj7xaGQR5DJadQyRwqeQyVPO6BTJqY2WFnwm_m_in6BvoEyZg</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Krikorian, R. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope></search><sort><creationdate>20150601</creationdate><title>Note on the Derivation of the Equation of Motion of a Charged Point-Particle from Hamilton's Principle</title><author>Krikorian, R. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-d1a0a570e03792e2f8ccf5d7097dd22097ba32afde9c56467ab35b502330265e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Astrophysics and Astroparticles</topic><topic>Astrophysics and Cosmology</topic><topic>Bolza problems</topic><topic>Derivation</topic><topic>Equations of motion</topic><topic>Hamilton's principle</topic><topic>Hamiltonian systems</topic><topic>Mathematical analysis</topic><topic>Mathematical research</topic><topic>Maximum principle</topic><topic>Observations and Techniques</topic><topic>Optimization</topic><topic>Particle dynamics</topic><topic>Particle physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics research</topic><topic>Sciences of the Universe</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Texts</topic><topic>Variational principles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krikorian, R. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Science Database (ProQuest)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Astrophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krikorian, R. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Note on the Derivation of the Equation of Motion of a Charged Point-Particle from Hamilton's Principle</atitle><jtitle>Astrophysics</jtitle><stitle>Astrophysics</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>58</volume><issue>2</issue><spage>244</spage><epage>249</epage><pages>244-249</pages><issn>0571-7256</issn><eissn>1573-8191</eissn><abstract>An alternative derivation of the equation of motion of a charged point particle from Hamilton’s principle is presented. The variational principle is restated as a Bolza problem of optimal control, the control variable u i , i = 0, …, 3, being the 4-velocity. The trajectory x ¯ i ( s ) i and 4-velocity ū i ( s ) of the particle is an optimal pair, i.e., it furnishes an extremum to the action integral. The pair ( x ¯ , ū) satisfies a set of necessary conditions known as the maximum principle. Because of the path dependence of proper time s, we are concerned with a control problem with a free end point in the space of coordinates (s , x 0 , …, x 3 ). To obtain the equation of motion, the transversality condition must be satisfied at the free end point.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10511-015-9379-4</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0571-7256
ispartof Astrophysics, 2015-06, Vol.58 (2), p.244-249
issn 0571-7256
1573-8191
language eng
recordid cdi_proquest_miscellaneous_1835671754
source SpringerLink Journals - AutoHoldings
subjects Astronomy
Astrophysics
Astrophysics and Astroparticles
Astrophysics and Cosmology
Bolza problems
Derivation
Equations of motion
Hamilton's principle
Hamiltonian systems
Mathematical analysis
Mathematical research
Maximum principle
Observations and Techniques
Optimization
Particle dynamics
Particle physics
Physics
Physics and Astronomy
Physics research
Sciences of the Universe
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Texts
Variational principles
title Note on the Derivation of the Equation of Motion of a Charged Point-Particle from Hamilton's Principle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A41%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Note%20on%20the%20Derivation%20of%20the%20Equation%20of%20Motion%20of%20a%20Charged%20Point-Particle%20from%20Hamilton's%20Principle&rft.jtitle=Astrophysics&rft.au=Krikorian,%20R.%20A.&rft.date=2015-06-01&rft.volume=58&rft.issue=2&rft.spage=244&rft.epage=249&rft.pages=244-249&rft.issn=0571-7256&rft.eissn=1573-8191&rft_id=info:doi/10.1007/s10511-015-9379-4&rft_dat=%3Cgale_hal_p%3EA451633902%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1828175295&rft_id=info:pmid/&rft_galeid=A451633902&rfr_iscdi=true