Note on the Derivation of the Equation of Motion of a Charged Point-Particle from Hamilton's Principle

An alternative derivation of the equation of motion of a charged point particle from Hamilton’s principle is presented. The variational principle is restated as a Bolza problem of optimal control, the control variable u i , i = 0, …, 3, being the 4-velocity. The trajectory x ¯ i ( s ) i and 4-veloci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysics 2015-06, Vol.58 (2), p.244-249
1. Verfasser: Krikorian, R. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An alternative derivation of the equation of motion of a charged point particle from Hamilton’s principle is presented. The variational principle is restated as a Bolza problem of optimal control, the control variable u i , i = 0, …, 3, being the 4-velocity. The trajectory x ¯ i ( s ) i and 4-velocity ū i ( s ) of the particle is an optimal pair, i.e., it furnishes an extremum to the action integral. The pair ( x ¯ , ū) satisfies a set of necessary conditions known as the maximum principle. Because of the path dependence of proper time s, we are concerned with a control problem with a free end point in the space of coordinates (s , x 0 , …, x 3 ). To obtain the equation of motion, the transversality condition must be satisfied at the free end point.
ISSN:0571-7256
1573-8191
DOI:10.1007/s10511-015-9379-4