Broadband and fabrication-tolerant on-chip scalable mode-division multiplexing based on mode-evolution counter-tapered couplers

A broadband and fabrication-tolerant on-chip scalable mode-division multiplexing (MDM) scheme based on mode-evolution counter-tapered couplers is designed and experimentally demonstrated on a silicon-on-insulator (SOI) platform. Due to the broadband advantage offered by mode evolution, the two-mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2015-05, Vol.40 (9), p.1956-1959
Hauptverfasser: Wang, Jing, Xuan, Yi, Qi, Minghao, Huang, Haiyang, Li, You, Li, Ming, Chen, Xin, Sheng, Zhen, Wu, Aimin, Li, Wei, Wang, Xi, Zou, Shichang, Gan, Fuwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A broadband and fabrication-tolerant on-chip scalable mode-division multiplexing (MDM) scheme based on mode-evolution counter-tapered couplers is designed and experimentally demonstrated on a silicon-on-insulator (SOI) platform. Due to the broadband advantage offered by mode evolution, the two-mode MDM link exhibits a very large, -1  dB bandwidth of >180  nm, which is considerably larger than most of the previously reported MDM links whether they are based on mode-interference or evolution. In addition, the performance metrics remain stable for large-device width deviations from the designed valued by -60  nm to 40 nm, and for temperature variations from -25°C to 75°C. This MDM scheme can be readily extended to higher-order mode multiplexing and a three-mode MDM link is measured with less than -10  dB crosstalk from 1.46 to 1.64 μm wavelength range.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.40.001956