Design of Ultracompact Graphene-Based Superscatterers
The energy-momentum dispersion relation is a fundamental property of plasmonic systems. In this paper, we show that the method of dispersion engineering can be used for the design of ultracompact graphene-based superscatterers. Based on the Bohr model, the dispersion relation of the equivalent plana...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in quantum electronics 2017-01, Vol.23 (1), p.130-137 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The energy-momentum dispersion relation is a fundamental property of plasmonic systems. In this paper, we show that the method of dispersion engineering can be used for the design of ultracompact graphene-based superscatterers. Based on the Bohr model, the dispersion relation of the equivalent planar waveguide is engineered to enhance the scattering cross section of a dielectric cylinder. Bohr conditions with different orders are fulfilled in multiple dispersion curves at the same resonant frequency. Thus, the resonance peaks from the first- and second-order scattering terms are overlapped in the deep-subwavelength scale by delicately tuning the gap thickness between two graphene layers. Using this ultracompact graphene-based superscatterer, the scattering cross section of the dielectric cylinder can be enhanced by five orders of magnitude. |
---|---|
ISSN: | 1077-260X 1558-4542 |
DOI: | 10.1109/JSTQE.2016.2537267 |