Detection of epileptic seizure in EEG signals using linear least squares preprocessing

Highlights • Linear least squares preprocessing models are developed for automatic detection of seizures. • They extract key features of an epileptic EEG signal. • They significantly reduce the dimension of the classification problem and the computational time. • They enhance the classification accu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods and programs in biomedicine 2016-09, Vol.133, p.95-109
1. Verfasser: Zamir, Z. Roshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Highlights • Linear least squares preprocessing models are developed for automatic detection of seizures. • They extract key features of an epileptic EEG signal. • They significantly reduce the dimension of the classification problem and the computational time. • They enhance the classification accuracy of an EEG signal in presence of seizures. • They are robust and efficient for detecting epileptic seizures.
ISSN:0169-2607
1872-7565
DOI:10.1016/j.cmpb.2016.05.002