Probing Distinct Fullerene Formation Processes from Carbon Precursors of Different Sizes and Structures

Fullerenes, cage-structured carbon allotropes, have been the subject of extensive research as new materials for diverse purposes. Yet, their formation process is still not clearly understood at the molecular level. In this study, we performed laser desorption ionization-ion mobility-mass spectrometr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2016-08, Vol.88 (16), p.8232-8238
Hauptverfasser: Han, Jong Yoon, Choi, Tae Su, Kim, Soyoung, Lee, Jong Wha, Ha, Yoonhoo, Jeong, Kwang Seob, Kim, Hyungjun, Choi, Hee Cheul, Kim, Hugh I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fullerenes, cage-structured carbon allotropes, have been the subject of extensive research as new materials for diverse purposes. Yet, their formation process is still not clearly understood at the molecular level. In this study, we performed laser desorption ionization-ion mobility-mass spectrometry (LDI-IM-MS) of carbon substrates possessing different molecular sizes and structures to understand the formation process of fullerene. Our observations show that the formation process is strongly dependent on the size of the precursor used, with small precursors yielding small fullerenes and large graphitic precursors generally yielding larger fullerenes. These results clearly demonstrate that fullerene formation can proceed via both bottom-up and top-down processes, with the latter being favored for large precursors and more efficient at forming fullerenes. Furthermore, we observed that specific structures of carbon precursors could additionally affect the relative abundance of C60 fullerene. Overall, this study provides an advanced understanding of the mechanistic details underlying the formation processes of fullerene.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.6b02076