Improving cross-modal face recognition using polarimetric imaging

We investigate the performance of polarimetric imaging in the long-wave infrared (LWIR) spectrum for cross-modal face recognition. For this work, polarimetric imagery is generated as stacks of three components: the conventional thermal intensity image (referred to as S ), and the two Stokes images,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2015-03, Vol.40 (6), p.882-885
Hauptverfasser: Short, Nathaniel, Hu, Shuowen, Gurram, Prudhvi, Gurton, Kristan, Chan, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the performance of polarimetric imaging in the long-wave infrared (LWIR) spectrum for cross-modal face recognition. For this work, polarimetric imagery is generated as stacks of three components: the conventional thermal intensity image (referred to as S ), and the two Stokes images, S and S , which contain combinations of different polarizations. The proposed face recognition algorithm extracts and combines local gradient magnitude and orientation information from S , S , and S to generate a robust feature set that is well-suited for cross-modal face recognition. Initial results show that polarimetric LWIR-to-visible face recognition achieves an 18% increase in Rank-1 identification rate compared to conventional LWIR-to-visible face recognition. We conclude that a substantial improvement in automatic face recognition performance can be achieved by exploiting the polarization-state of radiance, as compared to using conventional thermal imagery.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.40.000882