Design and Evaluation of a Fiber-Optic Grip Force Sensor with Compliant 3D-Printable Structure for (f)MRI Applications

Grip force sensors compatible with magnetic resonance imaging (MRI) are used in human motor control and decision-making research, providing objective and sensitive behavioral outcome measures. Commercial sensors are expensive, cover limited force ranges, rely on pneumatic force transmission that can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sensors 2016-01, Vol.2016 (2016), p.1-11
Hauptverfasser: Gassert, Roger, Lehner, Rea, Popp, Werner L., Johannes, Gunda H., Rinderknecht, Mike D., Bützer, Tobias L., Lambercy, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Grip force sensors compatible with magnetic resonance imaging (MRI) are used in human motor control and decision-making research, providing objective and sensitive behavioral outcome measures. Commercial sensors are expensive, cover limited force ranges, rely on pneumatic force transmission that cannot detect fast force changes, or are electrically active, which increases the risk of electromagnetic interference. We present the design and evaluation of a low-cost, 3D-printed, inherently MRI-compatible grip force sensor based on a commercial intensity-based fiber-optic sensor. A compliant monobloc structure with flexible hinges transduces grip force to a linear displacement captured by the fiber-optic sensor. The structure can easily be adapted for different force ranges by changing the hinge thickness. A prototype designed for forces up to 800 N was manufactured and showed a highly linear behavior (nonlinearity of 2.37%) and an accuracy of 1.57% in a range between zero and 500 N. It can be printed and assembled within one day and for less than $300. Accurate performance was confirmed, both inside and outside a 3 T MRI scanner within a pilot study. Given its simple design allowing for customization of sensing properties and ergonomics for different applications and requirements, the proposed grip force handle offers researchers a valuable scientific tool.
ISSN:1687-725X
1687-7268
DOI:10.1155/2016/6248178