Research on Attacking a Special Elliptic Curve Discrete Logarithm Problem
Cheon first proposed a novel algorithm for solving discrete logarithm problem with auxiliary inputs. Given some points P , α P , α 2 P , … , α d P ∈ G , an attacker can solve the secret key efficiently. In this paper, we propose a new algorithm to solve another form of elliptic curve discrete logari...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2016-01, Vol.2016 (2016), p.1-8 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cheon first proposed a novel algorithm for solving discrete logarithm problem with auxiliary inputs. Given some points P , α P , α 2 P , … , α d P ∈ G , an attacker can solve the secret key efficiently. In this paper, we propose a new algorithm to solve another form of elliptic curve discrete logarithm problem with auxiliary inputs. We show that if some points P , α P , α k P , α k 2 P , α k 3 P , … , α k φ ( d ) - 1 P ∈ G and a multiplicative cyclic group K = 〈 k 〉 are given, where d is a prime, φ ( d ) is the order of K . The secret key α ∈ F p ⁎ can be solved in O ( ( p - 1 ) / d + d ) group operations by using O ( ( p - 1 ) / d ) storage. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2016/5361695 |