Fluorescent Probe Encapsulated in Avidin Protein to Eliminate Nonspecific Fluorescence and Increase Detection Sensitivity in Blood Serum

Quantitative detection of trace amounts of a biomarker in protein rich human blood plasma using fluorescent probes is a great challenge as the real signal is usually obscured by nonspecific fluorescence. This problem occurs because most of the fluorescent dyes bind very tightly with blood proteins t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2016-08, Vol.88 (16), p.7873-7877
Hauptverfasser: Wu, Ting-Wei, Lee, Fang-Hong, Gao, Ruo-Cing, Chew, Chee Ying, Tan, Kui-Thong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantitative detection of trace amounts of a biomarker in protein rich human blood plasma using fluorescent probes is a great challenge as the real signal is usually obscured by nonspecific fluorescence. This problem occurs because most of the fluorescent dyes bind very tightly with blood proteins to produce a large fluorescence increase, resulting in overestimation of the biomarker concentrations and false positive diagnosis. In this paper, we report that biotinylated fluorescent probes encapsulated in avidin protein can generate very specific fluorescence in blood serum by blocking out nonspecific dye–protein interactions. We applied our novel probe design to detect two different types of biomolecules, hydrogen sulfide and nitroreductase. Our Avidin conjugated probes achieved quantitative analyte detection in blood serum; whereas concentrations were overestimated up to 320-fold when bare fluorescent probes were employed. As compared to conventional approaches where fluorescent probes are encapsulated into polymers and nanoparticles, our simple approach successfully overcomes many key issues such as dye leakage, long preparation steps, inconsistent dye–host ratios, difficulty in constructing in situ in a complex medium, and limited application to detect only small metabolites.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.6b02111