Robust backstepping controller for grid-side converter of DFIG-based wind energy conversion systems

A robust backstepping controller with nonlinear damping is designed for the grid‐side converter (GSC) of a grid‐connected doubly fed induction generator (DFIG) in wind energy conversion systems (WECSs). The designed controller achieves the exponential ultimate boundedness of both the DC‐link voltage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEJ transactions on electrical and electronic engineering 2016-09, Vol.11 (5), p.633-639
Hauptverfasser: Kim, Hyoung-Woo, Kim, Hongju, Kwon, Soonman, Choi, Joon-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A robust backstepping controller with nonlinear damping is designed for the grid‐side converter (GSC) of a grid‐connected doubly fed induction generator (DFIG) in wind energy conversion systems (WECSs). The designed controller achieves the exponential ultimate boundedness of both the DC‐link voltage and GSC current errors with an arbitrarily fast decay rate and an arbitrarily small bound in the presence of both model uncertainties and time‐varying external disturbances. A desirable feature that distinguishes the proposed controller from other existing controllers is that the control input of GSC is constructed only by the static feedback of the measurable states. As a result, the control input becomes smooth and easy to implement without requiring differentiation or switching operations. The exponential boundedness and performance of the designed controller are demonstrated by simulation using a 1.5‐MW DFIG‐based WECS model built in MATLAB/SimPowerSystems and compared with a standard proportional‐integral controller. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
ISSN:1931-4973
1931-4981
DOI:10.1002/tee.22281