Near-Coherent QPSK Performance With Coarse Phase Quantization: A Feedback-Based Architecture for Joint Phase/Frequency Synchronization and Demodulation
As communication systems scale up in bandwidth, the limited resolution in high-speed analog-to-digital converters (ADCs) is a key challenge in realizing low-cost "mostly digital" transceiver architectures. This motivates a systematic effort to understand the limits of such architectures un...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2016-09, Vol.64 (17), p.4432-4443 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4443 |
---|---|
container_issue | 17 |
container_start_page | 4432 |
container_title | IEEE transactions on signal processing |
container_volume | 64 |
creator | Wadhwa, Aseem Madhow, Upamanyu |
description | As communication systems scale up in bandwidth, the limited resolution in high-speed analog-to-digital converters (ADCs) is a key challenge in realizing low-cost "mostly digital" transceiver architectures. This motivates a systematic effort to understand the limits of such architectures under the severe quantization constraints imposed by the use of low-precision ADCs. In particular, we investigate a canonical problem of blind carrier phase and frequency synchronization with coarse phase quantization in this paper. We develop a Bayesian approach to blind phase estimation, jointly modeling the unknown data, unknown phase and the quantization nonlinearity. We highlight the crucial role of dither, implemented via a mixed signal architecture with a digitally controlled phase shift prior to the ADC. We show the efficacy of random dither, and then improve upon its performance with a simple feedback control policy that is close to optimal in terms of rapidly reducing the mean squared error of phase estimation. This initial blind phase acquisition stage is followed by feedback-based phase/frequency tracking using an Extended Kalman Filter. Performance evaluations for a QPSK system show that excellent bit error rate (BER) performance, close to that of an unquantized system, is achieved by the use of 8 phase bins (implementable using 4 one-bit ADCs operating on linear combinations of in-phase and quadrature components). |
doi_str_mv | 10.1109/TSP.2016.2568169 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835644891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7469332</ieee_id><sourcerecordid>4125830381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-f245ab27824e47718419f133f8e6c977ab1c8979c144613965813b0af5a311953</originalsourceid><addsrcrecordid>eNpdkT1v2zAQhoWgAZIm3Qt0IdClixye-N3NdeN8InXgFO0m0PQJUmqTKSkNzh_p3w0dGx2yHA937_vgiLcoPgIdAVBz9jCfjSoKclQJqUGag-IYDIeSciXf5Z4KVgqtfh8V71N6pBQ4N_K4-HeHNpaT0GJE35P72fyGzDA2Ia6td0h-dX1LJsHGhGTW2lzvB-v77tn2XfBfyZhMEZcL6_6U3_J2ScbRtV2Prh8ikowh16HL4Ffv2TTi3wG925D5xrs2Br8HEeuX5Duuw3JYvQ5Oi8PGrhJ-2L8nxc_p-cPksrz9cXE1Gd-WjlW8L5uKC7uolK44cqVAczANMNZolM4oZRfgtFHG5e9KYEYKDWxBbSMsAzCCnRRfdtynGPJpqa_XXXK4WlmPYUg1aCYk59pAln5-I30MQ_T5uqyiEgSVcgukO5WLIaWITf0Uu7WNmxpovU2qzknV26TqfVLZ8mln6RDxv1zxvGIVewGhvY9P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1806150665</pqid></control><display><type>article</type><title>Near-Coherent QPSK Performance With Coarse Phase Quantization: A Feedback-Based Architecture for Joint Phase/Frequency Synchronization and Demodulation</title><source>IEEE Electronic Library (IEL)</source><creator>Wadhwa, Aseem ; Madhow, Upamanyu</creator><creatorcontrib>Wadhwa, Aseem ; Madhow, Upamanyu</creatorcontrib><description>As communication systems scale up in bandwidth, the limited resolution in high-speed analog-to-digital converters (ADCs) is a key challenge in realizing low-cost "mostly digital" transceiver architectures. This motivates a systematic effort to understand the limits of such architectures under the severe quantization constraints imposed by the use of low-precision ADCs. In particular, we investigate a canonical problem of blind carrier phase and frequency synchronization with coarse phase quantization in this paper. We develop a Bayesian approach to blind phase estimation, jointly modeling the unknown data, unknown phase and the quantization nonlinearity. We highlight the crucial role of dither, implemented via a mixed signal architecture with a digitally controlled phase shift prior to the ADC. We show the efficacy of random dither, and then improve upon its performance with a simple feedback control policy that is close to optimal in terms of rapidly reducing the mean squared error of phase estimation. This initial blind phase acquisition stage is followed by feedback-based phase/frequency tracking using an Extended Kalman Filter. Performance evaluations for a QPSK system show that excellent bit error rate (BER) performance, close to that of an unquantized system, is achieved by the use of 8 phase bins (implementable using 4 one-bit ADCs operating on linear combinations of in-phase and quadrature components).</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2016.2568169</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>adaptive control ; Architecture ; Architecture (computers) ; Bayes methods ; Bayesian estimation ; Blinds ; Demodulation ; Digital ; Dithers ; Estimation ; Frequency synchronization ; frequency tracking ; Low precision ADC ; Mathematical model ; mixed signal architecture ; Phase shift keying ; Quantization ; Quantization (signal) ; Synchronization ; Transceivers</subject><ispartof>IEEE transactions on signal processing, 2016-09, Vol.64 (17), p.4432-4443</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-f245ab27824e47718419f133f8e6c977ab1c8979c144613965813b0af5a311953</citedby><cites>FETCH-LOGICAL-c324t-f245ab27824e47718419f133f8e6c977ab1c8979c144613965813b0af5a311953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7469332$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7469332$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wadhwa, Aseem</creatorcontrib><creatorcontrib>Madhow, Upamanyu</creatorcontrib><title>Near-Coherent QPSK Performance With Coarse Phase Quantization: A Feedback-Based Architecture for Joint Phase/Frequency Synchronization and Demodulation</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>As communication systems scale up in bandwidth, the limited resolution in high-speed analog-to-digital converters (ADCs) is a key challenge in realizing low-cost "mostly digital" transceiver architectures. This motivates a systematic effort to understand the limits of such architectures under the severe quantization constraints imposed by the use of low-precision ADCs. In particular, we investigate a canonical problem of blind carrier phase and frequency synchronization with coarse phase quantization in this paper. We develop a Bayesian approach to blind phase estimation, jointly modeling the unknown data, unknown phase and the quantization nonlinearity. We highlight the crucial role of dither, implemented via a mixed signal architecture with a digitally controlled phase shift prior to the ADC. We show the efficacy of random dither, and then improve upon its performance with a simple feedback control policy that is close to optimal in terms of rapidly reducing the mean squared error of phase estimation. This initial blind phase acquisition stage is followed by feedback-based phase/frequency tracking using an Extended Kalman Filter. Performance evaluations for a QPSK system show that excellent bit error rate (BER) performance, close to that of an unquantized system, is achieved by the use of 8 phase bins (implementable using 4 one-bit ADCs operating on linear combinations of in-phase and quadrature components).</description><subject>adaptive control</subject><subject>Architecture</subject><subject>Architecture (computers)</subject><subject>Bayes methods</subject><subject>Bayesian estimation</subject><subject>Blinds</subject><subject>Demodulation</subject><subject>Digital</subject><subject>Dithers</subject><subject>Estimation</subject><subject>Frequency synchronization</subject><subject>frequency tracking</subject><subject>Low precision ADC</subject><subject>Mathematical model</subject><subject>mixed signal architecture</subject><subject>Phase shift keying</subject><subject>Quantization</subject><subject>Quantization (signal)</subject><subject>Synchronization</subject><subject>Transceivers</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkT1v2zAQhoWgAZIm3Qt0IdClixye-N3NdeN8InXgFO0m0PQJUmqTKSkNzh_p3w0dGx2yHA937_vgiLcoPgIdAVBz9jCfjSoKclQJqUGag-IYDIeSciXf5Z4KVgqtfh8V71N6pBQ4N_K4-HeHNpaT0GJE35P72fyGzDA2Ia6td0h-dX1LJsHGhGTW2lzvB-v77tn2XfBfyZhMEZcL6_6U3_J2ScbRtV2Prh8ikowh16HL4Ffv2TTi3wG925D5xrs2Br8HEeuX5Duuw3JYvQ5Oi8PGrhJ-2L8nxc_p-cPksrz9cXE1Gd-WjlW8L5uKC7uolK44cqVAczANMNZolM4oZRfgtFHG5e9KYEYKDWxBbSMsAzCCnRRfdtynGPJpqa_XXXK4WlmPYUg1aCYk59pAln5-I30MQ_T5uqyiEgSVcgukO5WLIaWITf0Uu7WNmxpovU2qzknV26TqfVLZ8mln6RDxv1zxvGIVewGhvY9P</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Wadhwa, Aseem</creator><creator>Madhow, Upamanyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20160901</creationdate><title>Near-Coherent QPSK Performance With Coarse Phase Quantization: A Feedback-Based Architecture for Joint Phase/Frequency Synchronization and Demodulation</title><author>Wadhwa, Aseem ; Madhow, Upamanyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-f245ab27824e47718419f133f8e6c977ab1c8979c144613965813b0af5a311953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>adaptive control</topic><topic>Architecture</topic><topic>Architecture (computers)</topic><topic>Bayes methods</topic><topic>Bayesian estimation</topic><topic>Blinds</topic><topic>Demodulation</topic><topic>Digital</topic><topic>Dithers</topic><topic>Estimation</topic><topic>Frequency synchronization</topic><topic>frequency tracking</topic><topic>Low precision ADC</topic><topic>Mathematical model</topic><topic>mixed signal architecture</topic><topic>Phase shift keying</topic><topic>Quantization</topic><topic>Quantization (signal)</topic><topic>Synchronization</topic><topic>Transceivers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wadhwa, Aseem</creatorcontrib><creatorcontrib>Madhow, Upamanyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wadhwa, Aseem</au><au>Madhow, Upamanyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near-Coherent QPSK Performance With Coarse Phase Quantization: A Feedback-Based Architecture for Joint Phase/Frequency Synchronization and Demodulation</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>64</volume><issue>17</issue><spage>4432</spage><epage>4443</epage><pages>4432-4443</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>As communication systems scale up in bandwidth, the limited resolution in high-speed analog-to-digital converters (ADCs) is a key challenge in realizing low-cost "mostly digital" transceiver architectures. This motivates a systematic effort to understand the limits of such architectures under the severe quantization constraints imposed by the use of low-precision ADCs. In particular, we investigate a canonical problem of blind carrier phase and frequency synchronization with coarse phase quantization in this paper. We develop a Bayesian approach to blind phase estimation, jointly modeling the unknown data, unknown phase and the quantization nonlinearity. We highlight the crucial role of dither, implemented via a mixed signal architecture with a digitally controlled phase shift prior to the ADC. We show the efficacy of random dither, and then improve upon its performance with a simple feedback control policy that is close to optimal in terms of rapidly reducing the mean squared error of phase estimation. This initial blind phase acquisition stage is followed by feedback-based phase/frequency tracking using an Extended Kalman Filter. Performance evaluations for a QPSK system show that excellent bit error rate (BER) performance, close to that of an unquantized system, is achieved by the use of 8 phase bins (implementable using 4 one-bit ADCs operating on linear combinations of in-phase and quadrature components).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2016.2568169</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2016-09, Vol.64 (17), p.4432-4443 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835644891 |
source | IEEE Electronic Library (IEL) |
subjects | adaptive control Architecture Architecture (computers) Bayes methods Bayesian estimation Blinds Demodulation Digital Dithers Estimation Frequency synchronization frequency tracking Low precision ADC Mathematical model mixed signal architecture Phase shift keying Quantization Quantization (signal) Synchronization Transceivers |
title | Near-Coherent QPSK Performance With Coarse Phase Quantization: A Feedback-Based Architecture for Joint Phase/Frequency Synchronization and Demodulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near-Coherent%20QPSK%20Performance%20With%20Coarse%20Phase%20Quantization:%20A%20Feedback-Based%20Architecture%20for%20Joint%20Phase/Frequency%20Synchronization%20and%20Demodulation&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Wadhwa,%20Aseem&rft.date=2016-09-01&rft.volume=64&rft.issue=17&rft.spage=4432&rft.epage=4443&rft.pages=4432-4443&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2016.2568169&rft_dat=%3Cproquest_RIE%3E4125830381%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1806150665&rft_id=info:pmid/&rft_ieee_id=7469332&rfr_iscdi=true |