On the Characterization of Local Nash Equilibria in Continuous Games

We present a unified framework for characterizing local Nash equilibria in continuous games on either infinite-dimensional or finite-dimensional non-convex strategy spaces. We provide intrinsic necessary and sufficient first- and second-order conditions ensuring strategies constitute local Nash equi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2016-08, Vol.61 (8), p.2301-2307
Hauptverfasser: Ratliff, Lillian J., Burden, Samuel A., Sastry, S. Shankar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2307
container_issue 8
container_start_page 2301
container_title IEEE transactions on automatic control
container_volume 61
creator Ratliff, Lillian J.
Burden, Samuel A.
Sastry, S. Shankar
description We present a unified framework for characterizing local Nash equilibria in continuous games on either infinite-dimensional or finite-dimensional non-convex strategy spaces. We provide intrinsic necessary and sufficient first- and second-order conditions ensuring strategies constitute local Nash equilibria. We term points satisfying the sufficient conditions differential Nash equilibria. Further, we provide a sufficient condition (non-degeneracy) guaranteeing differential Nash equilibria are isolated and show that such equilibria are structurally stable. We present tutorial examples to illustrate our results and highlight degeneracies that can arise in continuous games.
doi_str_mv 10.1109/TAC.2016.2583518
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835644213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7497532</ieee_id><sourcerecordid>1835644213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-69aa1c0aa55d5e3ec3f63d979194c1d1d9c414df369dac499fa2c51beb2b11e53</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqWwI7FYYmFJ8fkjiccqlIJU0aXMluM4qqs0bu1kgF-PqyIGptNJz3t670HoHsgMgMjnzbyaUQL5jIqSCSgv0ASEKDMqKLtEE0KgzCQt82t0E-MurTnnMEEv6x4PW4urrQ7aDDa4bz0432Pf4pU3usMfOm7x4ji6ztXBaex6XPl-cP3ox4iXem_jLbpqdRft3e-cos_XxaZ6y1br5Xs1X2WGST5kudQaDNFaiEZYZg1rc9bIQoLkBhpopOHAm5blstGGS9lqagTUtqY1gBVsip7Odw_BH0cbB7V30diu071NZRSkz9NbFFhCH_-hOz-GPrVLFCkkJTmniSJnygQfY7CtOgS31-FLAVEnrSppVSet6ldrijycI85a-4cXXBaCUfYD5w9yPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807920642</pqid></control><display><type>article</type><title>On the Characterization of Local Nash Equilibria in Continuous Games</title><source>IEEE Electronic Library (IEL)</source><creator>Ratliff, Lillian J. ; Burden, Samuel A. ; Sastry, S. Shankar</creator><creatorcontrib>Ratliff, Lillian J. ; Burden, Samuel A. ; Sastry, S. Shankar</creatorcontrib><description>We present a unified framework for characterizing local Nash equilibria in continuous games on either infinite-dimensional or finite-dimensional non-convex strategy spaces. We provide intrinsic necessary and sufficient first- and second-order conditions ensuring strategies constitute local Nash equilibria. We term points satisfying the sufficient conditions differential Nash equilibria. Further, we provide a sufficient condition (non-degeneracy) guaranteeing differential Nash equilibria are isolated and show that such equilibria are structurally stable. We present tutorial examples to illustrate our results and highlight degeneracies that can arise in continuous games.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2016.2583518</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automatic control ; Cost function ; Game theory ; Games ; Manganese ; Manifolds ; Nash equilibrium ; optimization ; Programming ; Strategy</subject><ispartof>IEEE transactions on automatic control, 2016-08, Vol.61 (8), p.2301-2307</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-69aa1c0aa55d5e3ec3f63d979194c1d1d9c414df369dac499fa2c51beb2b11e53</citedby><cites>FETCH-LOGICAL-c394t-69aa1c0aa55d5e3ec3f63d979194c1d1d9c414df369dac499fa2c51beb2b11e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7497532$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7497532$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ratliff, Lillian J.</creatorcontrib><creatorcontrib>Burden, Samuel A.</creatorcontrib><creatorcontrib>Sastry, S. Shankar</creatorcontrib><title>On the Characterization of Local Nash Equilibria in Continuous Games</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We present a unified framework for characterizing local Nash equilibria in continuous games on either infinite-dimensional or finite-dimensional non-convex strategy spaces. We provide intrinsic necessary and sufficient first- and second-order conditions ensuring strategies constitute local Nash equilibria. We term points satisfying the sufficient conditions differential Nash equilibria. Further, we provide a sufficient condition (non-degeneracy) guaranteeing differential Nash equilibria are isolated and show that such equilibria are structurally stable. We present tutorial examples to illustrate our results and highlight degeneracies that can arise in continuous games.</description><subject>Automatic control</subject><subject>Cost function</subject><subject>Game theory</subject><subject>Games</subject><subject>Manganese</subject><subject>Manifolds</subject><subject>Nash equilibrium</subject><subject>optimization</subject><subject>Programming</subject><subject>Strategy</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EEqWwI7FYYmFJ8fkjiccqlIJU0aXMluM4qqs0bu1kgF-PqyIGptNJz3t670HoHsgMgMjnzbyaUQL5jIqSCSgv0ASEKDMqKLtEE0KgzCQt82t0E-MurTnnMEEv6x4PW4urrQ7aDDa4bz0432Pf4pU3usMfOm7x4ji6ztXBaex6XPl-cP3ox4iXem_jLbpqdRft3e-cos_XxaZ6y1br5Xs1X2WGST5kudQaDNFaiEZYZg1rc9bIQoLkBhpopOHAm5blstGGS9lqagTUtqY1gBVsip7Odw_BH0cbB7V30diu071NZRSkz9NbFFhCH_-hOz-GPrVLFCkkJTmniSJnygQfY7CtOgS31-FLAVEnrSppVSet6ldrijycI85a-4cXXBaCUfYD5w9yPg</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Ratliff, Lillian J.</creator><creator>Burden, Samuel A.</creator><creator>Sastry, S. Shankar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201608</creationdate><title>On the Characterization of Local Nash Equilibria in Continuous Games</title><author>Ratliff, Lillian J. ; Burden, Samuel A. ; Sastry, S. Shankar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-69aa1c0aa55d5e3ec3f63d979194c1d1d9c414df369dac499fa2c51beb2b11e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automatic control</topic><topic>Cost function</topic><topic>Game theory</topic><topic>Games</topic><topic>Manganese</topic><topic>Manifolds</topic><topic>Nash equilibrium</topic><topic>optimization</topic><topic>Programming</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ratliff, Lillian J.</creatorcontrib><creatorcontrib>Burden, Samuel A.</creatorcontrib><creatorcontrib>Sastry, S. Shankar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ratliff, Lillian J.</au><au>Burden, Samuel A.</au><au>Sastry, S. Shankar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Characterization of Local Nash Equilibria in Continuous Games</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2016-08</date><risdate>2016</risdate><volume>61</volume><issue>8</issue><spage>2301</spage><epage>2307</epage><pages>2301-2307</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We present a unified framework for characterizing local Nash equilibria in continuous games on either infinite-dimensional or finite-dimensional non-convex strategy spaces. We provide intrinsic necessary and sufficient first- and second-order conditions ensuring strategies constitute local Nash equilibria. We term points satisfying the sufficient conditions differential Nash equilibria. Further, we provide a sufficient condition (non-degeneracy) guaranteeing differential Nash equilibria are isolated and show that such equilibria are structurally stable. We present tutorial examples to illustrate our results and highlight degeneracies that can arise in continuous games.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2016.2583518</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2016-08, Vol.61 (8), p.2301-2307
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_1835644213
source IEEE Electronic Library (IEL)
subjects Automatic control
Cost function
Game theory
Games
Manganese
Manifolds
Nash equilibrium
optimization
Programming
Strategy
title On the Characterization of Local Nash Equilibria in Continuous Games
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Characterization%20of%20Local%20Nash%20Equilibria%20in%20Continuous%20Games&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Ratliff,%20Lillian%20J.&rft.date=2016-08&rft.volume=61&rft.issue=8&rft.spage=2301&rft.epage=2307&rft.pages=2301-2307&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2016.2583518&rft_dat=%3Cproquest_RIE%3E1835644213%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1807920642&rft_id=info:pmid/&rft_ieee_id=7497532&rfr_iscdi=true