On the Characterization of Local Nash Equilibria in Continuous Games
We present a unified framework for characterizing local Nash equilibria in continuous games on either infinite-dimensional or finite-dimensional non-convex strategy spaces. We provide intrinsic necessary and sufficient first- and second-order conditions ensuring strategies constitute local Nash equi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2016-08, Vol.61 (8), p.2301-2307 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2307 |
---|---|
container_issue | 8 |
container_start_page | 2301 |
container_title | IEEE transactions on automatic control |
container_volume | 61 |
creator | Ratliff, Lillian J. Burden, Samuel A. Sastry, S. Shankar |
description | We present a unified framework for characterizing local Nash equilibria in continuous games on either infinite-dimensional or finite-dimensional non-convex strategy spaces. We provide intrinsic necessary and sufficient first- and second-order conditions ensuring strategies constitute local Nash equilibria. We term points satisfying the sufficient conditions differential Nash equilibria. Further, we provide a sufficient condition (non-degeneracy) guaranteeing differential Nash equilibria are isolated and show that such equilibria are structurally stable. We present tutorial examples to illustrate our results and highlight degeneracies that can arise in continuous games. |
doi_str_mv | 10.1109/TAC.2016.2583518 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835644213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7497532</ieee_id><sourcerecordid>1835644213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-69aa1c0aa55d5e3ec3f63d979194c1d1d9c414df369dac499fa2c51beb2b11e53</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqWwI7FYYmFJ8fkjiccqlIJU0aXMluM4qqs0bu1kgF-PqyIGptNJz3t670HoHsgMgMjnzbyaUQL5jIqSCSgv0ASEKDMqKLtEE0KgzCQt82t0E-MurTnnMEEv6x4PW4urrQ7aDDa4bz0432Pf4pU3usMfOm7x4ji6ztXBaex6XPl-cP3ox4iXem_jLbpqdRft3e-cos_XxaZ6y1br5Xs1X2WGST5kudQaDNFaiEZYZg1rc9bIQoLkBhpopOHAm5blstGGS9lqagTUtqY1gBVsip7Odw_BH0cbB7V30diu071NZRSkz9NbFFhCH_-hOz-GPrVLFCkkJTmniSJnygQfY7CtOgS31-FLAVEnrSppVSet6ldrijycI85a-4cXXBaCUfYD5w9yPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807920642</pqid></control><display><type>article</type><title>On the Characterization of Local Nash Equilibria in Continuous Games</title><source>IEEE Electronic Library (IEL)</source><creator>Ratliff, Lillian J. ; Burden, Samuel A. ; Sastry, S. Shankar</creator><creatorcontrib>Ratliff, Lillian J. ; Burden, Samuel A. ; Sastry, S. Shankar</creatorcontrib><description>We present a unified framework for characterizing local Nash equilibria in continuous games on either infinite-dimensional or finite-dimensional non-convex strategy spaces. We provide intrinsic necessary and sufficient first- and second-order conditions ensuring strategies constitute local Nash equilibria. We term points satisfying the sufficient conditions differential Nash equilibria. Further, we provide a sufficient condition (non-degeneracy) guaranteeing differential Nash equilibria are isolated and show that such equilibria are structurally stable. We present tutorial examples to illustrate our results and highlight degeneracies that can arise in continuous games.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2016.2583518</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automatic control ; Cost function ; Game theory ; Games ; Manganese ; Manifolds ; Nash equilibrium ; optimization ; Programming ; Strategy</subject><ispartof>IEEE transactions on automatic control, 2016-08, Vol.61 (8), p.2301-2307</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-69aa1c0aa55d5e3ec3f63d979194c1d1d9c414df369dac499fa2c51beb2b11e53</citedby><cites>FETCH-LOGICAL-c394t-69aa1c0aa55d5e3ec3f63d979194c1d1d9c414df369dac499fa2c51beb2b11e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7497532$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7497532$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ratliff, Lillian J.</creatorcontrib><creatorcontrib>Burden, Samuel A.</creatorcontrib><creatorcontrib>Sastry, S. Shankar</creatorcontrib><title>On the Characterization of Local Nash Equilibria in Continuous Games</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We present a unified framework for characterizing local Nash equilibria in continuous games on either infinite-dimensional or finite-dimensional non-convex strategy spaces. We provide intrinsic necessary and sufficient first- and second-order conditions ensuring strategies constitute local Nash equilibria. We term points satisfying the sufficient conditions differential Nash equilibria. Further, we provide a sufficient condition (non-degeneracy) guaranteeing differential Nash equilibria are isolated and show that such equilibria are structurally stable. We present tutorial examples to illustrate our results and highlight degeneracies that can arise in continuous games.</description><subject>Automatic control</subject><subject>Cost function</subject><subject>Game theory</subject><subject>Games</subject><subject>Manganese</subject><subject>Manifolds</subject><subject>Nash equilibrium</subject><subject>optimization</subject><subject>Programming</subject><subject>Strategy</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EEqWwI7FYYmFJ8fkjiccqlIJU0aXMluM4qqs0bu1kgF-PqyIGptNJz3t670HoHsgMgMjnzbyaUQL5jIqSCSgv0ASEKDMqKLtEE0KgzCQt82t0E-MurTnnMEEv6x4PW4urrQ7aDDa4bz0432Pf4pU3usMfOm7x4ji6ztXBaex6XPl-cP3ox4iXem_jLbpqdRft3e-cos_XxaZ6y1br5Xs1X2WGST5kudQaDNFaiEZYZg1rc9bIQoLkBhpopOHAm5blstGGS9lqagTUtqY1gBVsip7Odw_BH0cbB7V30diu071NZRSkz9NbFFhCH_-hOz-GPrVLFCkkJTmniSJnygQfY7CtOgS31-FLAVEnrSppVSet6ldrijycI85a-4cXXBaCUfYD5w9yPg</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Ratliff, Lillian J.</creator><creator>Burden, Samuel A.</creator><creator>Sastry, S. Shankar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201608</creationdate><title>On the Characterization of Local Nash Equilibria in Continuous Games</title><author>Ratliff, Lillian J. ; Burden, Samuel A. ; Sastry, S. Shankar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-69aa1c0aa55d5e3ec3f63d979194c1d1d9c414df369dac499fa2c51beb2b11e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automatic control</topic><topic>Cost function</topic><topic>Game theory</topic><topic>Games</topic><topic>Manganese</topic><topic>Manifolds</topic><topic>Nash equilibrium</topic><topic>optimization</topic><topic>Programming</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ratliff, Lillian J.</creatorcontrib><creatorcontrib>Burden, Samuel A.</creatorcontrib><creatorcontrib>Sastry, S. Shankar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ratliff, Lillian J.</au><au>Burden, Samuel A.</au><au>Sastry, S. Shankar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Characterization of Local Nash Equilibria in Continuous Games</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2016-08</date><risdate>2016</risdate><volume>61</volume><issue>8</issue><spage>2301</spage><epage>2307</epage><pages>2301-2307</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We present a unified framework for characterizing local Nash equilibria in continuous games on either infinite-dimensional or finite-dimensional non-convex strategy spaces. We provide intrinsic necessary and sufficient first- and second-order conditions ensuring strategies constitute local Nash equilibria. We term points satisfying the sufficient conditions differential Nash equilibria. Further, we provide a sufficient condition (non-degeneracy) guaranteeing differential Nash equilibria are isolated and show that such equilibria are structurally stable. We present tutorial examples to illustrate our results and highlight degeneracies that can arise in continuous games.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2016.2583518</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2016-08, Vol.61 (8), p.2301-2307 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835644213 |
source | IEEE Electronic Library (IEL) |
subjects | Automatic control Cost function Game theory Games Manganese Manifolds Nash equilibrium optimization Programming Strategy |
title | On the Characterization of Local Nash Equilibria in Continuous Games |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Characterization%20of%20Local%20Nash%20Equilibria%20in%20Continuous%20Games&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Ratliff,%20Lillian%20J.&rft.date=2016-08&rft.volume=61&rft.issue=8&rft.spage=2301&rft.epage=2307&rft.pages=2301-2307&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2016.2583518&rft_dat=%3Cproquest_RIE%3E1835644213%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1807920642&rft_id=info:pmid/&rft_ieee_id=7497532&rfr_iscdi=true |