On the Characterization of Local Nash Equilibria in Continuous Games
We present a unified framework for characterizing local Nash equilibria in continuous games on either infinite-dimensional or finite-dimensional non-convex strategy spaces. We provide intrinsic necessary and sufficient first- and second-order conditions ensuring strategies constitute local Nash equi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2016-08, Vol.61 (8), p.2301-2307 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a unified framework for characterizing local Nash equilibria in continuous games on either infinite-dimensional or finite-dimensional non-convex strategy spaces. We provide intrinsic necessary and sufficient first- and second-order conditions ensuring strategies constitute local Nash equilibria. We term points satisfying the sufficient conditions differential Nash equilibria. Further, we provide a sufficient condition (non-degeneracy) guaranteeing differential Nash equilibria are isolated and show that such equilibria are structurally stable. We present tutorial examples to illustrate our results and highlight degeneracies that can arise in continuous games. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2016.2583518 |