On the nonlinear pseudoparabolic equation with the mixed inhomogeneous condition
We study the following initial-boundary value problem: 1 { u t − ( μ + α ∂ ∂ t ) ( ∂ 2 u ∂ x 2 + 1 x ∂ u ∂ x ) + f ( u ) = f 1 ( x , t ) , 1 < x < R , t > 0 , u x ( 1 , t ) = h 1 u ( 1 , t ) + g 1 ( t ) , u ( R , t ) = g R ( t ) , u ( x , 0 ) = u ˜ 0 ( x ) , where μ > 0 , α > 0 , h 1...
Gespeichert in:
Veröffentlicht in: | Boundary value problems 2016-07, Vol.2016 (1), p.1-26, Article 137 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the following initial-boundary value problem:
1
{
u
t
−
(
μ
+
α
∂
∂
t
)
(
∂
2
u
∂
x
2
+
1
x
∂
u
∂
x
)
+
f
(
u
)
=
f
1
(
x
,
t
)
,
1
<
x
<
R
,
t
>
0
,
u
x
(
1
,
t
)
=
h
1
u
(
1
,
t
)
+
g
1
(
t
)
,
u
(
R
,
t
)
=
g
R
(
t
)
,
u
(
x
,
0
)
=
u
˜
0
(
x
)
,
where
μ
>
0
,
α
>
0
,
h
1
≥
0
,
R
>
1
are given constants and
f
,
f
1
,
g
1
,
g
R
,
u
˜
0
are given functions. First, we use the Galerkin and compactness method to prove the existence of a unique weak solution
u
(
t
)
of Problem (
1
) on
(
0
,
T
)
, for every
T
>
0
. Next, we study the asymptotic behavior of the solution
u
(
t
)
as
t
→
+
∞
. Finally, we prove the existence and uniqueness of a weak solution of Problem (
1
)
1,2
associated with a ‘
(
N
+
1
)
-points condition in time’ case,
2
u
(
x
,
0
)
=
∑
i
=
1
N
η
i
u
(
x
,
T
i
)
,
where
(
T
i
,
η
i
)
,
i
=
1
,
…
,
N
, are given constants satisfying
0
<
T
1
<
T
2
<
⋯
<
T
N
−
1
<
T
N
≡
T
,
∑
i
=
1
N
|
η
i
|
≤
1
. |
---|---|
ISSN: | 1687-2770 1687-2762 1687-2770 |
DOI: | 10.1186/s13661-016-0645-0 |