On the molecular dynamics in long-acting calcium channel blocker lacidipine: solid-state NMR, neutron scattering and periodic DFT study
Molecular and vibrational dynamics of a new-generation lipophilic calcium channel blocker lacidipine (LCDP) are thoroughly explored by combining solid-state nuclear magnetic resonance (NMR) with high-flux quasi-elastic (QENS) and inelastic neutron scattering (INS) experiments. Contrary to the dynami...
Gespeichert in:
Veröffentlicht in: | RSC advances 2016-01, Vol.6 (71), p.66617-66629 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Molecular and vibrational dynamics of a new-generation lipophilic calcium channel blocker lacidipine (LCDP) are thoroughly explored by combining solid-state nuclear magnetic resonance (NMR) with high-flux quasi-elastic (QENS) and inelastic neutron scattering (INS) experiments. Contrary to the dynamically averaged
13
C CP/MAS NMR response, neutron vibrational spectroscopy confirms our previous findings on the thermodynamically stable structure. High-resolution low-wavenumber INS spectrum is reported and fully interpreted based on periodic density functional theory (DFT) calculations in the quasi-harmonic approximation, staying in excellent agreement with the experiment. The INS spectrum was found to be clearly dominated by CH
3
torsional features, widely spread over the range of 5-35 meV.
1
H NMR relaxation indicates a molecular reorientation with different correlation times. The NMR relaxometry was further combined with an extended QENS study, providing a quantitative description of the intramolecular motions in terms of their activation barriers and correlation times, while their assignment was fully supported by theoretical analysis. While the internal dynamics of side-chain methyl groups can be described by rotation about the threefold-axes, the high-resolution QENS measurements give evidence of rotational tunneling of 2,6-methyl groups at low temperature. The vibrational analysis suggests that strong coupling of methyl librations with lattice modes promotes such an intriguing quantum effect.
A new-generation lipophilic calcium channel blocker lacidipine (LCDP) has been thoroughly explored by combining solid-state nuclear magnetic resonance (NMR) with high-flux quasi-elastic (QENS) and inelastic neutron scattering (INS) experiments. |
---|---|
ISSN: | 2046-2069 2046-2069 |
DOI: | 10.1039/c6ra07117a |