Osteoprotegerin gene-modified BMSCs with hydroxyapatite scaffold for treating critical-sized mandibular defects in ovariectomized osteoporotic rats
[Display omitted] Women with postmenopausal osteoporosis are at a high risk for fracture as their bone resorption rate exceeds bone formation rate, resulting in decreased bone mineral density and microarchitectural deterioration. Osteoprotegerin (OPG), a known therapeutic agent capable of inhibiting...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2016-09, Vol.42, p.378-388 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Women with postmenopausal osteoporosis are at a high risk for fracture as their bone resorption rate exceeds bone formation rate, resulting in decreased bone mineral density and microarchitectural deterioration. Osteoprotegerin (OPG), a known therapeutic agent capable of inhibiting osteoclastogenesis, has been used in treatment of chronic bone resorptive diseases. On the other hand, bone mesenchymal stem cells (BMSCs) play an important role in bone formation. To inhibit excessive bone resorption and increase bone formation, we developed a novel therapeutic strategy by genetically modifying BMSCs for OPG delivery. The OPG gene-modified BMSCs were seeded on hydroxyapatite (HA) scaffolds to promote bone regeneration in critical-sized mandibular bone defects in ovariectomy (OVX) induced osteoporotic rats. Rat BMSCs were infected with human OPG adenoviruses (OPG-BMSCs). The gene-modified cells expressed higher OPG gene level than the control Ad-BMSCs (p |
---|---|
ISSN: | 1742-7061 1878-7568 |
DOI: | 10.1016/j.actbio.2016.06.019 |