Monitoring the instrument response of the high-sensitivity seismograph network in Japan (Hi-net): effects of response changes on seismic interferometry analysis

More than 10 years have passed since observations began to be recorded by Hi-net, a network of high-sensitivity seismometers located in Japan. Several large earthquakes, including the 2011 Tohoku-Oki earthquake, have been recorded by the network during this period. Age-related degradation and the st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth, planets, and space planets, and space, 2015-08, Vol.67 (1), p.1-10, Article 135
Hauptverfasser: Ueno, Tomotake, Saito, Tatsuhiko, Shiomi, Katsuhiko, Haryu, Yoshikatsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:More than 10 years have passed since observations began to be recorded by Hi-net, a network of high-sensitivity seismometers located in Japan. Several large earthquakes, including the 2011 Tohoku-Oki earthquake, have been recorded by the network during this period. Age-related degradation and the strong ground motion of large earthquakes may change the instrument response of the high-sensitivity seismometers of Hi-net. Thus, we checked the natural frequency f and damping constant h for each Hi-net sensor and monitored the instrument response for 10 years from 2003 to 2013. Most of the sensors showed a stable instrument response over this period. More than 95 % of the sensors whose responses we could well estimate showed small fluctuations in their natural frequencies and damping constants of within 0.05 Hz and 0.05, respectively. We also found that many Hi-net sensors in northeastern Japan showed slight changes in the instrument response as a result of the 2011 Tohoku-Oki earthquake. Based on the assumption that the instrument responses remained unchanged, the fractional velocity reduction in the subsurface structure was reported by seismic interferometry analysis. To investigate how changes in the instrument response can cause errors in seismic interferometry analysis, we conducted a synthetic test. The results indicate that the instrument response did not result in systematic variation in the time delay observed in the interferometry analysis. This confirmed that the velocity decrease observed as a result of the 2011 Tohoku-Oki earthquake was not due to artificial instrument error.
ISSN:1880-5981
1880-5981
DOI:10.1186/s40623-015-0305-0