Transformation of worst weed into N-, S-, and P-tridoped carbon nanorings as metal-free electrocatalysts for the oxygen reduction reaction

Substituting sustainable/cost-effective catalysts for scarce and costly metal ones is currently among the major targets of sustainable chemistry. Herein, we report the synthesis of N-, S-, and P-tridoped worst-weed-derived carbon nanorings (WWCNRs) that can serve as a metal-free and selective electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2015-01, Vol.3 (46), p.23376-23384
Hauptverfasser: Gao, Shuyan, Wei, Xianjun, Liu, Haiying, Geng, Keran, Wang, Hongqiang, Moehwald, Helmuth, Shchukin, Dmitry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Substituting sustainable/cost-effective catalysts for scarce and costly metal ones is currently among the major targets of sustainable chemistry. Herein, we report the synthesis of N-, S-, and P-tridoped worst-weed-derived carbon nanorings (WWCNRs) that can serve as a metal-free and selective electrocatalyst for the oxygen reduction reaction (ORR). The WWCNRs are synthesized via activation-free polymerization of worst weed, Eclipta prostrata, and then removal of the metallic residues by using HCl. The WWCNRs exhibit good catalytic activity towards the 4 electron-transfer ORR with a low onset potential and high kinetic limiting current density, along with high selectivity (introducing CO, the sample loses only
ISSN:2050-7488
2050-7496
DOI:10.1039/c5ta04809e