Contact Extensions Over a High- k Dielectric Layer for Surface Field Mitigation in High Power 4H-SiC Photoconductive Switches
We focus on a simulation study to probe the mitigation of electric fields, especially at the edges of metal contacts to SiC-based photoconductive switches. Field reduction becomes germane given that field-induced failures near contacts have been reported. A dual strategy of extending metal contacts...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2016-08, Vol.63 (8), p.3171-3176 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We focus on a simulation study to probe the mitigation of electric fields, especially at the edges of metal contacts to SiC-based photoconductive switches. Field reduction becomes germane given that field-induced failures near contacts have been reported. A dual strategy of extending metal contacts to effectively spread the electric field over a larger distance and to employ HfO 2 as a high-k dielectric, is discussed. Simulation results show that peak electric fields can be lowered by up to ~67% relative to a standard design. Finally, our calculations predict that the internal temperature rise for a ~7-ns laser pulse and applied voltages around 20 kV (typical experimental values) would also be effectively controlled. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2016.2577547 |