Impact of Detergent-Based Decellularization Methods on Porcine Tissues for Heart Valve Engineering

To date an optimal decellularization protocol of heart valve leaflets (HVL) and pericardia (PER) with an adequate preservation of the extracellular matrix (ECM) is still lacking. This study compares a 4 day Triton X-100-based protocol with faster SDC-based protocols for the decellularization of card...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering 2016-09, Vol.44 (9), p.2827-2839
Hauptverfasser: Roosens, Annelies, Somers, Pamela, De Somer, Filip, Carriel, Victor, Van Nooten, Guido, Cornelissen, Ria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To date an optimal decellularization protocol of heart valve leaflets (HVL) and pericardia (PER) with an adequate preservation of the extracellular matrix (ECM) is still lacking. This study compares a 4 day Triton X-100-based protocol with faster SDC-based protocols for the decellularization of cardiac tissues. Decellularized and non-treated HVL and PER were processed for histological, biochemical and mechanical analysis to determine the effect of these agents on the structure, ECM components, and biomechanical properties. Tissues treated with SDC-based protocols still showed nuclear material, whereas tissues treated with Triton X-100 1% + ENZ ± TRYP were completely cell free. For both decellularized tissues, an almost complete washout of glycosaminoglycans, a reduction of soluble collagen and an alteration of the surface ultrastructure was observed. Interestingly, only the elastic fibers of pericardial tissue were affected and this tissue had a decreased maximum load. This study showed that both detergents had a similar impact on the ECM. However, Triton X-100 1% +DNase/RNase (ENZ) ± Trypsin (TRYP) is the only protocol that generated completely cell free bioscaffolds. Also, our study clearly demonstrated that the decellularization agents have more impact on pericardial tissues than on heart valve leaflets. Thus, for the purpose of tissue engineering of heart valves, it is advisable to use valvular rather than pericardial matrices.
ISSN:0090-6964
1573-9686
DOI:10.1007/s10439-016-1555-0