All-Polystyrene 3D-Printed Electrochemical Device with Embedded Carbon Nanofiber-Graphite-Polystyrene Composite Conductor

Carbon nanofibres (CNFs) and graphite flake microparticles were added to thermoplastic polystyrene polymer with the aim of making new conductive blends suitable for 3D‐printing. Various polymer/carbon blends were evaluated for suitability as printable, electroactive material. An electrically conduct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electroanalysis (New York, N.Y.) N.Y.), 2016-07, Vol.28 (7), p.1517-1523
Hauptverfasser: Rymansaib, Zuhayr, Iravani, Pejman, Emslie, Edward, Medvidović-Kosanović, Martina, Sak-Bosnar, Milan, Verdejo, Raquel, Marken, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbon nanofibres (CNFs) and graphite flake microparticles were added to thermoplastic polystyrene polymer with the aim of making new conductive blends suitable for 3D‐printing. Various polymer/carbon blends were evaluated for suitability as printable, electroactive material. An electrically conducting polystyrene composite was developed and used with commercially available polystyrene (HIPS) to manufacture electrodes suitable for electrochemical experiments. Electrodes were produced and evaluated for cyclic voltammetry of aqueous 1,1’‐ferrocenedimethanol and differential pulse voltammetry detection of aqueous Pb2+ via anodic stripping. A polystyrene/CNF/graphite (80/10/10 wt%) composite provides good conductivity and a stable electrochemical interface with well‐defined active geometric surface area. The printed electrodes form a stable interface to the polystyrene shell, give good signal to background voltammetric responses, and are reusable after polishing.
ISSN:1040-0397
1521-4109
DOI:10.1002/elan.201600017