Formularization and simulation of Bragg selectivity of readout signals in angular-multiplexing holographic data storage

Bragg selectivity of readout signals in angular-multiplexing holographic data storage was investigated. The effects of degrading factors, namely, volume change, refractive-index change, and positional change (tilt and rotation) of a hologram, and the effects of compensating variables, namely, wavele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 2016-04, Vol.55 (10), p.2664-2674
1. Verfasser: Ide, Tatsuro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bragg selectivity of readout signals in angular-multiplexing holographic data storage was investigated. The effects of degrading factors, namely, volume change, refractive-index change, and positional change (tilt and rotation) of a hologram, and the effects of compensating variables, namely, wavelength shift and reference-beam-angle shift, on Bragg selectivity were evaluated. Deviation of wave vectors of recovered pixels of a hologram from the Bragg condition under degrading factors and compensating variables, namely, Bragg mismatch, Δσ, was mathematically derived. Approximating Δσ by using the first-order Maclaurin series with respect to degrading factors and compensating variables revealed their effects on Bragg selectivity. The extent to which wavelength and angle of reference beam should be shifted to compensate for the degrading factors were determined. Then, readout images were simulated under multiple degrading factors and compensating variables. These simulated images were found to agree well with the experimentally obtained ones, which reveals the validity of the formalization of Bragg selectivity.
ISSN:0003-6935
1559-128X
2155-3165
1539-4522
DOI:10.1364/AO.55.002664