Synthesis of a series of amino acid derived ionic liquids and tertiary amines: green chemistry metrics including microbial toxicity and preliminary biodegradation data analysis

A series of l -phenylalanine ionic liquids (ILs), l -tyrosine ILs, tertiary amino analogues and proposed transformation products (PTPs) have been synthesised. Antimicrobial toxicity data, as part of the green chemistry metrics evaluation and to supplement preliminary biodegradation studies, was dete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2016-01, Vol.18 (16), p.4374-4392
Hauptverfasser: Jordan, Andrew, Haiß, Annette, Spulak, Marcel, Karpichev, Yevgen, Kümmerer, Klaus, Gathergood, Nicholas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of l -phenylalanine ionic liquids (ILs), l -tyrosine ILs, tertiary amino analogues and proposed transformation products (PTPs) have been synthesised. Antimicrobial toxicity data, as part of the green chemistry metrics evaluation and to supplement preliminary biodegradation studies, was determined for ILs, tertiary amino analogues and PTPs. Good to very good overall yields (76 to 87%) for the synthesis of 6 ILs from l -phenylalanine were achieved. A C 2 -symmetric IL was prepared from TMS-imidazole in a one-pot two-step method in excellent yield (91%). Synthesis of the l -tyrosine IL derivatives utilised a simple protection group strategy by using an extra equivalent of the bromoacetyl bromide reagent. Improvements in the synthesis of the α-bromoamide alkylating reagent from l -phenylalanine were achieved, directed by green chemistry metric analysis. A solvent switch from dichloromethane to THF is described, however the yield was 15% lower. Antimicrobial activity testing of l -phenylalanine ILs, l -tyrosine ILs, tertiary amino analogues and PTPs, against 8 bacteria and 12 fungi strains, showed that no compound had a high antimicrobial activity, apart from an l -proline analogue. In this exceptional case, the highest toxicity (IC 95 = 125 and 250 μM) was observed towards the two Gram positive strains Staphylococcus aureus and Staphylococcus epidermidis respectively. High antimicrobial activity was not found for the other bacteria or fungi strains screened. The limitations of the antimicrobial activity study is discussed in relation to SAR studies. Preliminary analysis of biodegradation data (Closed Bottle Test, OECD 301D) is presented. The pyridinium IL derivative is the preferred green IL of the series based on synthesis, toxicity and biodegradation considerations. This work is a joint study with Kümmerer and co-workers and the PTPs were selected as target compounds based on concurrent biodegradation studies by the Kümmerer group. For the comprehensive biodegradation and transformation product analysis see the accompanying paper. A series of l -phenylalanine and l -tyrosine derived ionic liquids and tertiary amines were evaluated according to principles of green chemistry.
ISSN:1463-9262
1463-9270
DOI:10.1039/c6gc00415f