Nanoscale magnetism and novel electronic properties of a bilayer bismuth(111) film with vacancies and chemical doping
Magnetically doped topological insulators (TIs) exhibit several exotic phenomena including the magnetoelectric effect and quantum anomalous Hall effect. However, from an experimental perspective, incorporation of spin moment into 3D TIs is still challenging. Thus, instead of 3D TIs, the 2D form of T...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2016-07, Vol.18 (3), p.255-2561 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magnetically doped topological insulators (TIs) exhibit several exotic phenomena including the magnetoelectric effect and quantum anomalous Hall effect. However, from an experimental perspective, incorporation of spin moment into 3D TIs is still challenging. Thus, instead of 3D TIs, the 2D form of TIs may open up new opportunities to induce magnetism. Based on first principles calculations, we demonstrate a novel strategy to realize robust magnetism and exotic electronic properties in a 2D TI [bilayer Bi(111) film: abbreviated as Bi(111)]. We examine the magnetic and electronic properties of Bi(111) with defects such as bismuth monovacancies (MVs) and divacancies (DVs), and these defects decorated with 3d transition metals (TMs). It has been observed that the MV in Bi(111) can induce novel half metallicity with a net magnetic moment of 1
μ
B
. The origin of half metallicity and magnetism in MV/Bi(111) is further explained by the passivation of the σ-dangling bonds near the defect site. Furthermore, in spite of the nonmagnetic nature of DVs, the TMs (V, Cr, Mn, and Fe) trapped at the 5/8/5 defect structure of DVs can not only yield a much higher spin moment than those trapped at the MVs but also display intriguing electronic properties such as metallic, semiconducting and spin gapless semiconducting properties. The predicted magnetic and electronic properties of TM/DV/Bi(111) systems are explained through density of states, spin density distribution and Bader charge analysis.
A single Bi(111) bilayer with defects and transition metal impurities. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c6cp03056d |