One-pot production of 2,5-dimethylfuran from fructose over Ru/C and a Lewis-Broensted acid mixture in N,N-dimethylformamide
An efficient catalysis system composed of a Lewis-Broensted acid mixture and Ru/C using N,N-dimethylformamide as a solvent was developed for the one-pot conversion of fructose to 2,5-dimethylfuran (2,5-DMF) via the dehydration/hydrogenolysis sequence. The effects of various reaction parameters, such...
Gespeichert in:
Veröffentlicht in: | Catalysis science & technology 2016-08, Vol.6 (16), p.6217-6225 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An efficient catalysis system composed of a Lewis-Broensted acid mixture and Ru/C using N,N-dimethylformamide as a solvent was developed for the one-pot conversion of fructose to 2,5-dimethylfuran (2,5-DMF) via the dehydration/hydrogenolysis sequence. The effects of various reaction parameters, such as solvent, catalyst type, catalyst loading, reaction pressure, temperature and time, on single fructose dehydration, 5-hydroxymethylfurfural (5-HMF) hydrogenolysis and the one-pot conversion of fructose to 2,5-DMF were systematically investigated. The results showed that 2,5-DMF could be successfully produced with a yield as high as 66.3 mol% by using a one-pot method directly from fructose under the optimized reaction conditions, which is by far the highest yield ever reported for the production of 2,5-DMF from fructose through a one-pot strategy. The Ru/C catalyst could be reused at least three times with a slight decrease in 2,5-DMF yield. |
---|---|
ISSN: | 2044-4753 2044-4761 |
DOI: | 10.1039/c6cy00275g |