Many-body characterization of particle-conserving topological superfluids
What distinguishes trivial superfluids from topological superfluids in interacting many-body systems where the number of particles is conserved? Building on a class of integrable pairing Hamiltonians, we present a number-conserving, interacting variation of the Kitaev model, the Richardson-Gaudin-Ki...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2014-12, Vol.113 (26), p.267002-267002, Article 267002 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | What distinguishes trivial superfluids from topological superfluids in interacting many-body systems where the number of particles is conserved? Building on a class of integrable pairing Hamiltonians, we present a number-conserving, interacting variation of the Kitaev model, the Richardson-Gaudin-Kitaev chain, that remains exactly solvable for periodic and antiperiodic boundary conditions. Our model allows us to identify fermion parity switches that distinctively characterize topological superconductivity (fermion superfluidity) in generic interacting many-body systems. Although the Majorana zero modes in this model have only a power-law confinement, we may still define many-body Majorana operators by tuning the flux to a fermion parity switch. We derive a closed-form expression for an interacting topological invariant and show that the transition away from the topological phase is of third order. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.113.267002 |