Multiscale Modeling of Powder Bed-Based Additive Manufacturing

Powder bed fusion processes are additive manufacturing technologies that are expected to induce the third industrial revolution. Components are built up layer by layer in a powder bed by selectively melting confined areas, according to sliced 3D model data. This technique allows for manufacturing of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of materials research 2016-07, Vol.46 (1), p.93-123
Hauptverfasser: Markl, Matthias, Körner, Carolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Powder bed fusion processes are additive manufacturing technologies that are expected to induce the third industrial revolution. Components are built up layer by layer in a powder bed by selectively melting confined areas, according to sliced 3D model data. This technique allows for manufacturing of highly complex geometries hardly machinable with conventional technologies. However, the underlying physical phenomena are sparsely understood and difficult to observe during processing. Therefore, an intensive and expensive trial-and-error principle is applied to produce components with the desired dimensional accuracy, material characteristics, and mechanical properties. This review presents numerical modeling approaches on multiple length scales and timescales to describe different aspects of powder bed fusion processes. In combination with tailored experiments, the numerical results enlarge the process understanding of the underlying physical mechanisms and support the development of suitable process strategies and component topologies.
ISSN:1531-7331
1545-4118
DOI:10.1146/annurev-matsci-070115-032158