Optical analysis of CH3NH3SnxPb1-xI3 absorbers: a roadmap for perovskite-on-perovskite tandem solar cells

Organic-inorganic perovskite structures in which lead is substituted by tin are exceptional candidates for broadband light absorption. Herein we present a thorough analysis of the optical properties of CH3NH3SnxPb1-xI3 films, providing the field with definitive insights about the possibilities of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2016-07, Vol.4 (29), p.11214-11221
Hauptverfasser: Anaya, Miguel, Correa-Baena, Juan P, Lozano, Gabriel, Saliba, Michael, Anguita, Pablo, Roose, Bart, Abate, Antonio, Steiner, Ullrich, Graetzel, Michael, Calvo, Mauricio E, Hagfeldt, Anders, Miguez, Hernan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Organic-inorganic perovskite structures in which lead is substituted by tin are exceptional candidates for broadband light absorption. Herein we present a thorough analysis of the optical properties of CH3NH3SnxPb1-xI3 films, providing the field with definitive insights about the possibilities of these materials for perovskite solar cells of superior efficiency. We report a user's guide based on the first set of optical constants obtained for a series of tin/lead perovskite films, which was only possible to measure due to the preparation of optical quality thin layers. According to the Shockley-Queisser theory, CH3NH3SnxPb1-xI3 compounds promise a substantial enhancement of both short circuit photocurrent and power conversion efficiency in single junction solar cells. Moreover, we propose a novel tandem architecture design in which both top and bottom cells are made of perovskite absorbers. Our calculations indicate that such perovskite-on-perovskite tandem devices could reach efficiencies over 35%. Our analysis serves to establish the first roadmap for this type of cells based on actual optical characterization data. We foresee that this study will encourage the research on novel near-infrared perovskite materials for photovoltaic applications, which may have implications in the rapidly emerging field of tandem devices.
ISSN:2050-7488
2050-7496
DOI:10.1039/c6ta04840d